首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 696 毫秒
1.
本文研究了受阻胺TMP、TMPM、TUV-770对MMA、St本体聚合的影响。无论用BPO或AlBN引发MMA聚合时,TMPM或TUV-770都能延长诱导期,但对R_p的影响较小,而TMP能使R_p略增。测定了聚合反应的表观活化能和动力学方程。  相似文献   

2.
The initiation of polymerization of vinyl monomers such as methyl methacrylate (MMA) and methyl acrylate (MA) by a charge transfer complex formed between n-butylamine(nBA) and carbon tetrachloride (CCl4) in dimethylsulfoxide (DMSO) at 30°C is slow. The effect of the dimethylsulfoxide complexes of Rh(III) and Ru(II) on the polymerization of MMA and MA in the presence of nBA, and CCl4 in DMSO has been studied. The rate of polymerization and percent conversion of the MMA and MA at 30°C are evaluated at the critical concentration of the metal complexes. At the critical range of the metal complex concentrations, both Rp, and percent conversion of MMA and MA were found to be highest. However, above and below the critical concentrations, Rp and percent conversion of the monomers were found to decrease. A suitable mechanism for the polymerization has been proposed.  相似文献   

3.
2,2,4-Trimethyl-3-on-1-pentyl methacrylate (TMPM) was first synthesized from the condensation reaction of 2,2,4-trimethyl-1-pentanol-3-on with methacrylic acid. Second, the polymerization of TMPM and the copolymerization of TMPM with styrene (St) were carried out in benzene at 60°C, using 2,2′-azobisisobutyronitrile (AIBN) as an initiator. As the result of kinetic investigation, the rate of polymerization (Rp) could be expressed by: Rp = k[AIBN]0.5 [TMPM]1.0. Kinetic constants of polymerization of TMPM were obtained as follows: kp/k = 0.27 dm3/2 mole?1/2 sec?1/2, 2fkd = 1.23 × 10?5 sec?1, f = 0.73, Cm = 2.6 × 10?5, Cs = 1.1 × 10?5. From the results the reactivity of TMPM was found to be larger than that of methyl methacrylate. The overall activation energy was calculated to be 110 kJ mole?1. The following monomer reactivity ratios and Q, e values were obtained: TMPM(M1) ? St(M2): r1 = 1.50, r2 = 0.14, Q1 = 2.63, E1 = 0.45.  相似文献   

4.
A combined system of sodium tetraphenylborate (STPB) and p‐chlorobenzenediazonium tetrafluoroborate (CDF) serves as an effective initiator at low temperatures for acrylate monomers such as methyl methacrylate (MMA), ethyl acrylate, and di‐2‐ethylhexyl itaconate. The polymerization of MMA with the STPB/CDF system has been kinetically investigated in acetone. The polymerization shows a low overall activation energy of 60.3 kJ/mol. The polymerization rate (Rp) at 40 °C is given by Rp = k[STPB/CDF]0.5[MMA]1.6, when the molar ratio of STPB to CDF is kept constant at unity, suggesting that STPB and CDF form a complex with a large stability constant and play an important role in initiation and that MMA participates in the initiation process. From the results of a spin trapping study, p‐chlorophenyl and phenyl radicals are presumed to be generated in the polymerization system. A plausible initiation mechanism is proposed on the basis of kinetic and electron spin resonance results. A large solvent effect on the polymerization can be observed. The largest Rp value in dimethyl sulfoxide is 11 times the smallest value in N,N‐dimethylformamide. The copolymerization of MMA and styrene with the STPB/CDF system gives results somewhat different from those of conventional radical copolymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4206–4213, 2001  相似文献   

5.
The effect of fullerene (C60) on the radical polymerization of methyl methacrylate (MMA) in benzene was studied kinetically and by means of ESR, where dimethyl 2,2′-azobis(isobutyrate) (MAIB) was used as initiator. The polymerization rate (Rp) and the molecular weight of resulting poly(MMA) decreased with increasing C60 concentration ((0–2.11) × 10−4 mol/L). The molecular weight of polymer tended to increase with time at higher C60 concentrations. Rp at 50°C in the presence of C60 (7.0 × 10−5 mol/L) was expressed by Rp = k[MAIB]0.5[MMA]1.25. The overall activation energy of polymerization at 7.0 × 10−5 mol/L of C60 concentration was calculated to be 23.2 kcal/mol. Persistent fullerene radicals were observed by ESR in the polymerization system. The concentration of fullerene radicals was found to increase linearly with time and then be saturated. The rate of fullerene radical formation increased with MAIB concentration. Thermal polymerization of styrene (St) in the presence of resulting poly(MMA) seemed to yield a starlike copolymer carrying poly(MMA) and poly(St) arms. The results (r1 = 0.53, r2 = 0.56) of copolymerization of MMA and St with MAIB at 60°C in the presence of C60 (7.15 × 10−5 mol/L) were similar to those (r1 = 0.46, r2 = 0.52) in the absence of C60. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2905–2912, 1998  相似文献   

6.
 The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0∝[I]0.71[S]0.23.The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methylmethacrylate) decreased as the polymerization temperature,[I]and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.  相似文献   

7.
Abstract

Methyl methacrylate (MMA) was found to be effectively polymerized with bis(cyclopentadienyl)titanium dichloride (CP2TiCl2) in a water-methanol mixture (1:1, v/v). The polymerization proceeded heterogeneously because the resulting poly(MMA) was insoluble in the system. The rate (R p) of the heterogenous polymerization was apparently expressed by R p = k[Cp2TiCl2]2[MMA]2˙5 (at 40°C). The resulting poly(MMA) was observed to consist of tetrahydrofuran (THF)-soluble and insoluble parts. In contrast with the usual radical poly(MMA), the THF-insoluble part was soluble in benzene, toluene, and chloroform but insoluble in polar solvents such as ethyl acetate, acetone, acetonitrile, dimethylformamide, and dimethylsulfoxide. The polymerization was found to be profoundly accelerated by irradiation with a fluorescent room lamp (15 W). The results of copolymerization of MMA and acrylonitrile indicated that the present polymerization proceeds through a radical mechanism.  相似文献   

8.
Polymerizabilities of several polar vinyl monomers in the presence of imidazole (Im) have been studied in CDC13 and CD3OD by NMR spectra. Acrylic acid formed a bimolecular adduct with Im as the initial adduct, while methacrylic acid was not obtained, On the other hand, methyl acrylate, methyl methacrylate (MMA), acrylamide (AAm), and acrylonitrile formed the initial adduct between Im and monomer, respectively. In these monomers, AAm and MMA gave each polymer in tetrahydrofuranat room temperature. The number-average molecular weight ([Mbar]n) of AAm polymers was determined to be in the range of 1000 to 1500, and the [Mbar]n of MMA polymers was found to be in the range of 2500 to 4500, The rate of polymerization Rp was expressed by the equations Rp = k[Im][AAm] and Rp = k[Im] [MMA]2, respectively. The activation energy ER was obtained by Arrheniuss's plots as ER(AAm) = 9.6 kcal/mol and ER(MMA) = 3.8 kcal/mol. These polymerization mechanisms are discussed on the basis of these results.  相似文献   

9.
The kinetics of the polymerization of methyl methacrylate (MMA) in the presence of imidazole (Im), 2-methylimidazole (2MIm), or benz-imidazole (BIm) in tetrahydrofuran (THF) at 15–40°C was investigated by dilatometry. The rate of polymerization, Rp , was expressed by Rp = k[Im] [MMA]2, where k = 3.0 × 10?6 L2/(mol2 s) in THF at 30°C. The overall activation energy, Ea , was 6.9 kcal/mol for the Im system and 7.3 kcal/mol for the 2MIm system. The relation between logRp and 1 T was not linear for the BIm system. The polymers obtained were soluble in acetone, chloroform, benzene, and THF. The melting points of the polymers were in the range of 258–280°C. The 1H-NMR spectra indicated that the polymers were made up of about 58–72% of syndiotactic structure. The polymerization mechanism is discussed on the basis of these results.  相似文献   

10.
Benzaldehyde (PhCHO) is found to be able to initiate the radical polymerization of methyl methacrylate (MMA). The rate of polymerization is expressed by the following equation: Rp = const[PhCHO]0.5[MMA]1.5. The overall activation energy is estimated to be 56.3 kJ mole?1. The mechanism of polymerization is discussed.  相似文献   

11.
Radical polymerization of methyl mcthacrylate (MMA) initiated with various diacyl peroxideamine systems was studied. Benzoyl peroxide (BPO) and lauroyl peroxide (LPO) were used as diacyl peroxide component, N,N-dimethyl aniline (DMA) and its para substituted derivatives, i.e., N,N-dimethyl-p-toluidine (DMT), p-hydroxymethyl-N,N-dimethyl aniline (HDMA), p-nitro-N,N-dimethyl aniline (NDMA) and p-dimethylamino benzaldehyde (DMAB) were used as amine components. It was found that the peroxide-DMT systems give higher rates of bulk polymerization R_p of MMA than the organic hydroperoxide-DMT systems with the following descending order BPO-DMT>LPO-DMT>CHP (cumene hydroperoxide)-DMT>TBH (tert-butyl hydroperoxide)-DMT. The aromatic tertiary amines possess obvious structural effect on the R_p values in the diacyl peroxideamine system. The overall activation energy of MMA polymerization was determined and thekinetics of polymerization of MMA initiated with BPO-DMT system was investigated.  相似文献   

12.
Ruthenium trichloride (RuCl3 or RuIII) catalyzed polymerization of methylmethacrylate (MMA) initiated with n‐butylamine (BA) in the presence of carbon tetrachloride (CCl4) by a charge‐transfer mechanism has been investigated in a dimethylsulfoxide (DMSO) medium by employing a dilatometric technique at 60°C. The rate of polymerization (Rp) has been obtained under the conditions [CCl4]/[BA] ? 1 and [CCl4]/[BA] ? 1. The kinetic data indicate the possible participation of the charge‐transfer complex formed between the amine–RuIII complex and CCl4 in the polymerization of MMA. In the absence of either CCl4 or BA, no polymerization of MMA is observed under the present experimental conditions. The rate of polymerization is inhibited by hydroquinone, suggesting a free‐radical initiation. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 43: 70–77, 2011  相似文献   

13.
A kinetic study has been made of the polymerization of methyl methacrylate (MMA) initiated by a charge-transfer complex of poly-2-vinylpyridine (electron donor) and liquid sulfur dioxide (acceptor) in the presence of carbon tetrachloride. It is concluded that the polymerization proceeds through free-radical intermediates, as with the pyridine-liquid sulfur dioxide complex system. The association constants K of acceptor and polymer electron donors which range widely in their molecular weight were determined spectrophotometrically, and it has been found that both K and overall rate of polymerization Rp of MMA decrease with increasing molecular weight of polymer donor; contrary to this, molecular weight of PMMA formed increases with increasing molecular weight of the polymer donor. Other kinetic behaviors was essentially the same as in the pyridine–liquid sulfur dioxide system, i.e., Rp is proportional to the square root of the concentration of the complex and to the 3/2-order of the monomer concentration; Rp is clearly sensitive to the carbon tetrachloride concentration at low concentration of carbon tetrachloride, but for a higher concentration it is practically independent of the carbon tetrachloride concentration. It has been deduced from a kinetic mechanism for the initiation that a primary radical may be produced from the reduction of carbon tetrachloride by an associated complex consisting of liquid sulfur dioxide–polymer donor and the monomer.  相似文献   

14.
Aliphatic tertiary amino-group N-substituted acrylamides, N-acryl-N′-methylpiperazine (AMP)and N-methacryl-N′-methylpiperazine (MAMP) were synthesized directly from N-methylpiperazinewith corresponding acryloyl chlorides and characterized by elementary analysis of their picrates,~1H-NMR, IR and MS. AMP did not polymerize with benzoyl peroxide (BPO), but could poly-merize with lauroyl peroxide (LPO). The rate equation of the polymerization was given as R_P=K_P [AMP]~(1.5)[LPO]~(0.5) and the overall activation energy of this polymerization system was 10.8Kcal/mol. The redox nature of LPO with the monomer itself was suggested. Even though AMP and MAMP hardly proceed the polymerization initiated with BPO, butunder lower concentration would form redox system with BPO to initiate the polymerization of MMAreadily. The rate equation of the polymerization of MMA initiated with MAMP-BPO systemwas given as R_P=K_P [MMA] [MAMP}~(0.5) [BPO]~(0.5) and the overall activation energy was 10.2Kcal/mol. The analysis of the obtained polymers confirmed that MAMP not only initiated the poly-merization of MMA by combining with BPO, but also took part in the polymer chains impartingthem with better biocompatibility.  相似文献   

15.
Polymerization of MMA was carried out in the presence of visible light (440 nm) with the use of γ-picoline-bromine charge transfer complex as the initiator. The rate of polymerization Rp increases with increasing monomer concentration and the monomer exponent was computed to be unity. The rate of polymerization increases with increasing initiator concentration. The initiator exponent was computed to be 0.5. The reaction was carried out at three different temperatures and the overall activation energy was calculated to be 4.5 kcal/mol. The polymerization was inhibited in the presence of hydroquinone. Kinetic and other evidence indicates that the overall polymerization takes place by a radical mechanism.  相似文献   

16.
The polymerization of methyl methacrylate (MMA) initiated by an enolizable ketone (R1? CO? CH2? CO? R2)-carbon black system was investigated. Although enolizable ketone itself could not do so, the polymerization of MMA was initiated by enolizable ketone in the presence of carbon black. In addition, a chloranil-enolizable ketone system was able to initiate the polymerization of MMA. It was found that the enol form of the ketone and quinonic oxygen groups on the carbon black surface played an important role in the initiation system; namely, it was considered that the polymerization was begun by the ketone radical (R1? CO? CH? CO? R2) formed by a one-electron transfer reaction from enolate ion to quinonic oxygen groups. The effect of solvent on the process was also studied. The rate of the polymerization increased, depending on the solvent used, in the following order: benzene < 1,4-dioxane < dimethyl sulfoxide < N,N-dimethylformamide < N-methyl-2-pyrrolidone. Furthermore, it became apparent that during the polymerization poly(methyl methacrylate) was grafted onto the carbon black surface (grafting ratio was ca. 40% when benzene was used as solvent) and the carbon black obtained gave a stable colloidal dispersion in organic solvent.  相似文献   

17.
Abstract

Polymerizations of methyl methacrylate (MMA) and acrylonitrile (AN) were carried out in aqueous nitric acid at 30°C with the redox initiator system ammonium ceric nitrate-ethyl cellosolve (EC). A short induction period was observed as well as the attainment of a limiting conversion for polymerization reactions. The consumption of ceric ion was first order with respect to Ce(IV) concentration in the concentration range (0.2–0.4) × 10?2 M, and the points at higher and lower concentrations show deviations from a linear fit. The plots of the inverse of pseudo-first-order rate constant for ceric ion consumption, (k 1)?1 vs [EC]?1, gave straight lines for both the monomer systems with nonzero intercepts supporting complex formation between Ce(IV) and EC. The rate of polymerization increases regularly with [Ce(IV)] up to 0.003 M, yielding an order of 0.41, then falls to 0.0055 M and again shows a rise at 0.00645 M for MMA polymerization. For AN polymerization, R p shows a steep rise with [Ce(IV)] up to 0.001 M, and beyond this concentration R p shows a regular increase with [Ce(IV)], yielding an order of 0.48. In the presence of constant [NO? 3], MMA and AN polymerizations yield orders of 0.36 and 0.58 for [Ce(IV)] variation, respectively. The rates of polymerization increased with an increase in EC and monomer concentrations: only at a higher concentration of EC (0.5 M) was a steep fall in R p observed for both monomer systems. The orders with respect to EC and monomer for MMA polymerization were 0.19 and 1.6, respectively. The orders with respect to EC and monomer for AN polymerization were 0.2 and 1.5, respectively. A kinetic scheme involving oxidation of EC by Ce(IV) via complex formation, whose decomposition gives rise to a primary radical, initiation, propagation, and termination of the polymeric radicals by biomolecular interaction is proposed. An oxidative termination of primary radicals by Ce(IV) is also included.  相似文献   

18.
Polymerization of methylmethacrylate (MMA) with aminoalcohols, namely ethanolamine (EA), diethanolamine (DEA) and triethanolamine (TEA) in the presence of carbontetrachloride (CCl4) has been investigated in the dimethylsulfoxide (DMSO) medium by employing a dilatometric technique. The rate of polymerization (R p) has been evaluated under the conditions and > 1. The kinetic data reveal the possible participation of a charge-transfer complex in the polymerization reaction. In the absence of either CCl4 or amine, no polymerization of MMA was observed under the present experimental conditions. The polymerization of MMA was inhibited by hydroquinone, indicating a free radical initiation.  相似文献   

19.
The thermal polymerization of methyl methacrylate [MMA] was carried out using ylide (4-picolinium 4-chloro phenacyl methylide) as an initiator. The rate of polymerization (Rp) increases with increasing monomer and initiator concentrations; The exponent value has been computed to be 1 ± 0.02 and 0.5, respectively. The reaction was carried out at four different temperatures and the overall activation energy has been computed to be 16.01 kcal/mol. The polymerization was inhibited in the presence of hydroquinone as a radical scavanger. Kinetic studies indicates that the overall polymerization takes place by a radical mechanism.  相似文献   

20.
Polymerization of methyl methacrylate (MMA) with aliphatic primary amines and carbon tetrachloride has been investigated in th dimethylsulfoxide medium by employing a dilatometric technique at 60°C. The rate of polymerization (Rp) has been evaluated under the conditions, [CCl4]/[amine] < 1 and > 1. The kinetic data indicate possible participation of the charge transfer complexes formed between the amine + CCl4 and the amine + MMA in the polymerization of MMA. In the absence of CCl4 or amine, no polymerization of MMA was observed under the present experimental conditions. The polymerization of MMA was inhibited by hydroquinone, indicating a free radical initiation. The energy of activation varied from 32 to 58 kJ mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号