首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
In the present work nano crystalline copper aluminate (CuAl2O4) has been synthesized by the Pechini method using aqueous solutions containing corresponding metal nitrates. A Taguchi L4 statistical design was employed for investigating the most effective factors on the synthesis conditions and their interactions and production optimization. Nano crystalline CuAl2O4 particles with crystal size between 17 and 26 nm were obtained. The product characterized by XRD, FT-IR, DLS and TGA. The morphological properties have investigated using SEM. The photocatalytic degradation was investigated using methyl orange under the irradiation of visible light.  相似文献   

2.
Iron (III) rich pigments MgFe2O4 and ZnFe2O4 spinel ferrites and α-Fe2O3 hematite were synthesized by Pechini route and precipitation process, respectively. The compounds were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy and visible-NIR spectroscopy. Diffuse reflectance spectra were interpreted in regard of structural features of the three oxides in order to correlate absorption bands positions with structural parameters. It has been demonstrated that the two main absorption edges occurring in visible range (400-800 nm) can be attributed to two 2p(O2−)→3d(Fe3+) charge transfers, the energy being directly linked to the distortion degree of the [FeO6] octahedra.  相似文献   

3.
Some common nanoparticles, such as Zinc Oxide have been used as nanocatalysts in many processes, but they also have an important application in water purification processes. In this research, ZnO based nanoparticles were used for the degradation of Amlodipine Besylate (AMB) and the effect of some main parameters, e.g. initial concentration of AMB, nanocatalysts dose, pH of the solution, temperature of the solution, H2O2 dose, and the time of visible light irradiation, were investigated. The destruction amount was determined by UV-Vis spectroscopy. The synthesized nanoparticles were characterized by FE-SEM, XRD, FT-IR, BET, BJH, EDS, XRF and UV-Vis techniques. The maximum degradation of AMB was about 90% in 60 min of visible light irradiation with 100 μL of H2O2.  相似文献   

4.
Novel sulfur-modified niobium(V) oxide nanoparticles (SNON) that firstly exhibited good visible light sensitization were fabricated by a modified sol–gel technique using a very stable sol containing niobium(V) chloride, oxalic acid, isopropanol as chelating agent and thiourea as sulfur source. The resulting S-doped Nb2O5 nanomaterials were characterized by cyclic voltammetry (CV), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDAX), scanning electron microscope (SEM), ultra-violet diffuse reflectance (UV-DRS) and thermogravimetry thermal Analysis (TG-DTA). As against the response of unmodified niobium(V) oxide nanoparticles (UNON), the doped samples show different electrochemical response indicating an induced charge transfer across the niobium pentoxide/solution interface, thus forming two anodic peaks and a cathodic peak. This important observation was confirmed by UV-DRS in terms of band bending due to sulfur doping. Upon sulfur-modification, the absorption edge extends into the visible light region. The SEM observation shows that the SNPN existed in the mode of polycrystalline structure and the average grain size 63 nm. The EDAX analysis of undoped Nb2O5 and sulfur doped Nb2O5 shows the Nb2O5 (98%) and S (2%) content of nanopowder. These SNON nanoparticles are expected to be suitable candidates as visible light niobium(V) oxide nanoparticles sensitization.  相似文献   

5.
Fe doped ZnS nanoparticles (Zn1?xFexS; where x = 0.00, 0.03, 0.05 and 0.10) were synthesized by a chemical precipitation method. The synthesized products were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, ultraviolet–visible and photoluminescence spectrometer. The X-ray diffraction and transmission electron microscope studies show that the size of crystallites is in the range of 2–10 nm. Photocatalytic activities of ZnS and 3, 5 and 10 mol% Fe doped ZnS were evaluated by decolorization of methylene blue in aqueous solution under ultraviolet and visible light irradiation. It was found that the Fe doped ZnS bleaches methylene blue much faster than the undoped ZnS upon its exposure to the visible light as compared to ultraviolet light. The optimal Fe/Zn ratio was observed to be 3 mol% for photocatalytic applications.  相似文献   

6.
A combination of photocathodic stripping and precipitation was used to prepare CdTe nanoparticles (size range: 30–60 nm) that were immobilized on a polycrystalline Au substrate. Thus visible light irradiation of a Te modified Au surface generated Te2− species in situ followed by interfacial reaction with added Cd2+ ions in 0.1 M Na2SO4 electrolyte. The resultant CdTe compound semiconductor deposited as nanosized particles uniformly dispersed on the Au substrate surface. This approach to CdTe nanoparticle deposition was monitored by a combination of electrochemical methods (voltammetry, chronoamperometry) and quartz crystal microgravimetry in the “dark” and under illumination. The synthesized CdTe nanoparticles were characterized by scanning electron microscopy and energy dispersive X-ray analyses and laser Raman spectroscopy.  相似文献   

7.
In this study, lanthanum, cerium, and praseodymium orthophosphates were synthesized by the modified Pechini method. The compounds were analyzed using XRD, TG/DSC, FTIR methods, and the isothermal nitrogen adsorption technique. The results showed that mesoporous and nanocrystalline powders can be synthesized by this method. Moreover, due to the limited formation of lanthanide polyphosphates on the surface of the powders the modified Pechini method allows better control of the compound stoichiometry in comparison with the commonly used method of phosphates precipitation from solutions rich in H3PO4.  相似文献   

8.
Nano-sized nickel ferrite (NiFe2O4) and cobalt ferrite particles (CoFe2O4) were successfully synthesized using a hydrothermal method. Techniques of X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometer, energy dispersive X-ray spectroscopy, vibrating sample magnetometer and transmission electron microscope have been used to characterize and study the as-synthesized NiFe2O4 and CoFe2O4 products. The results showed that the average size of the nickel and cobalt ferrite nanoparticles is smaller than 10 and 100 nm, respectively. The results of magnetic measurement showed that the synthesized NiFe2O4 and CoFe2O4 nanoparticles were superparamagnetic and soft ferromagnetic materials, respectively. Study of adsorption behavior showed that these nanoparticles can act as a good adsorbent for removing Pb2+.  相似文献   

9.
Magnetite (Fe3O4) nanoparticles were synthesized by chemical precipitation. To reduce the aggregation of Fe3O4 nanoparticles, an effective surface modification method was proposed by grafting polystyrene onto the Fe3O4 particles. The results of Fourier transform infrared spectra and elemental analysis showed that the polymer chains have been successfully grafted from the surface of the Fe3O4 nanoparticles and that the percentage of grafting can reach 73%. Transmission electron microscope showed that grafted polymer chains on nanoparticles could prevent the aggregation of Fe3O4 nanoparticles markedly in toluene and improve their compatibility with organic phase. Another finding was the grafting reaction did not alter the crystalline structure of the Fe3O4 nanoparticles according to the X-ray diffraction patterns, and the saturation magnetization of PS-Fe3O4 nanoparticles was found to be lower than bulk magnetite.  相似文献   

10.
Single-phase ZnAl2O4 nanoparticles with the spinel structure were successfully synthesized using a modified polyacrylamide gel method according to the atomic ratio of Zn to Al = 1: 1.8. The as-prepared samples were characterized by means of X-ray powder diffraction (XRD), thermogravimetric analysis (TG), differential scanning calorimetry analysis (DSC), field-emission scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and photoluminescence (PL) spectra. XRD patterns show that the pure phase of ZnAl2O4 is obtained after heating the xerogel at 900°C for 5 h in air. The SEM images reveal that the ZnAl2O4 nanoparticles have a narrow particle size distribution and the average particle size is around 45 nm. Photoluminescence (PL) spectra demonstrate the single phase ZnAl2O4 nanoparticles have an emission peak located at 469 nm when excited by 350 nm light. The phase structure, coordination mechanism, and luminescence properties have been discussed on the basis of the experimental results.  相似文献   

11.
Magnesium-aluminum oxide, MgAl2O4 spinel nanoparticles have been synthesized using normal micelle microemulsion methods. A mixed magnesium-aluminum hydroxide is initially formed which after annealing at 600°C forms nanocrystalline MgAl2O4 spinel. By controlling reactant concentration in the micelle solution, the particle size has been tuned over the range 4-20 nm. The reaction pathways have been determined by using the characterization methods such as X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry.  相似文献   

12.
In this paper, CdS nanoparticles as a visible light active photocatalyst were coupled by NiFe2O4 and reduced graphene oxide (rGO) to form CdS–NiFe2O4/rGO nanocomposite by facile hydrothermal methods. The CdS–NiFe2O4/rGO nanocomposite shows enhanced photocatalytic activity for the degradation of methylene blue (MB) under visible light illumination. In addition to improved photocatalytic performance, this prepared nanocomposite shows increased photostability and is magnetically separable from the aqueous media. The degradation rate constant (kapp) of the optimized photocatalyst, i.e. CdS–NiFe2O4 (0.05)/rGO 25 wt% nanocomposite, was higher than the corresponding CdS and NiFe2O4 nanoparticles by factors of 11.1 and 8.9, respectively. The synergistic interactions between CdS, NiFe2O4 and rGO lead to enhanced surface area, reduced aggregation of the nanoparticles, decreased the recombination of photogenerated electron–hole pairs, and increased the charge separation efficiency and effective electron–hole generation transfer. According to the obtained results, a proposed mechanism of the photodegradation of MB under visible light irradiation is finally mentioned.  相似文献   

13.
以七水硫酸锌、氢氧化钠为原料,采用室温一步固相反应合成ZnO纳米粒子,并分别利用X射线衍射分析(XRD)、傅里叶变换红外光谱分析(FTIR)、热重分析(TG)、扫描电子显微分析(SEM)、透射电子显微分析(TEM)、N2吸附-脱附、紫外可见漫反射光谱分析(UV-Vis DRS)等方法对ZnO纳米粒子进行表征。实验结果表明:不需任何添加剂,室温下可通过一步固相反应合成ZnO纳米粒子,其形成过程首先是ZnSO4·7H2O和NaOH充分接触,然后反应形成Zn4SO4(OH)6·5H2O,最后NaOH的溶解热可使Zn4SO4(OH)6·5H2O转变为ZnO并逐渐长大形成纳米粒子。同时以甲基橙为降解对象评价了ZnO纳米粒子的光催化活性,实验结果表明:紫外光照射下,该方法合成的ZnO纳米粒子对甲基橙具有较好的光催化活性,且光催化动力学方程符合准一级反应动力学。  相似文献   

14.
In3+-doped BiVO4 nanoparticles with enhanced visible light activity have been successfully synthesized by a hydrothermal method. The synthesized materials were characterized by X-ray diffraction, Raman, X-ray photoelectron spectroscopy, scanning electron microscopy, BET surface areas analysis, and ultraviolet–visible diffuse reflectance spectra. In comparison with pure BiVO4, the In3+-doped BiVO4 displayed greater photocatalytic activity in the degradation of methyl blue under visible light illumination. All samples possessed a single monoclinic structure. The introduction of In ions resulted in structural distortion and the decreased band gap energy, producing more electrons and holes for photocatalytic reaction. In the meantime, the doping In ions entails a red shift in the absorption edge and an increase in the intensity of light absorption. The best photocatalytic performance was obtained with the BiVO4 sample containing 5.0 mol% In ions.  相似文献   

15.
In the present work, a visible-light-driven Ag/AgBr/ZnFe2O4 photocatalyst has been successfully synthesized via a deposition–precipitation and photoreduction method. The crystal structure, chemical composition, morphology and optical properties of the as-prepared nanocomposites were characterized by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscope, UV–vis diffuse reflectance spectroscopy and photoluminescence. The photocatalytic activities of the Ag/AgBr/ZnFe2O4 nanocomposites were evaluated through the photodegradation of gaseous toluene and methyl orange (MO) under visible light. The results revealed that the as-prepared Ag/AgBr/ZnFe2O4 nanocomposite exhibited excellent photocatalytic activity. The degrading efficiency of MO could still reach 90% after four cycles, and the Ag/AgBr/ZnFe2O4 nanocomposite could be recycled easily by a magnet. Additionally, the enhanced photocatalytic mechanism was discussed according to the trapping experiments, which indicated that the photo-generated holes (h+) and •O2 played important roles in photodegradation process. At last, a possible photocatalytic oxidation pathways of toluene was proposed based on the results of GC–MS. The Ag/AgBr/ZnFe2O4 composites showed potential application for efficient removal of organic pollutant.  相似文献   

16.
The bactericidal activity of TiO2 nanoparticles under visible light is very important in regards to its practical applications. In this paper, we synthesized vanadium-pentoxide-loaded TiO2 nanoparticles (V2O5?CTiO2) using a chemical vapor condensation method, followed by the impregnation method, and characterized its physicochemical properties through X-ray diffraction patterning, X-ray photoelectron spectroscopy analysis, Raman spectra analysis, and Fourier transform infrared analysis. In addition, the antibacterial activity of V2O5?CTiO2 nanoparticles against E. coli was evaluated and compared with pure TiO2 nanoparticles. In these experiments, the population of E. coli was shown to be significantly reduced by V2O5?CTiO2 nanoparticles under illumination with fluorescent light, whereas pure TiO2 nanoparticles showed about 3.3-fold lower antibacterial activity than the V2O5?CTiO2 nanoparticles. This result was most likely due to the change in surface conditions of the TiO2 nanoparticles, which was due to the loading of vanadium pentoxide on the TiO2 nanoparticles. Furthermore, both photocatalysts showed similar antibacterial activity under UV-A (352?nm) irradiation.  相似文献   

17.
Dy-doped Y2O3 nanoparticles were synthesized by solution combustion route with urea as fuel, and their microstructural features were analyzed by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The XRD study confirms the formation of a pure cubic phase of Y2O3, with the maximum textural coefficient along the (2 2 2) plane for the Dy-doped samples. The lattice fringes in the HRTEM image and the bright spotty rings in the selected area electron diffraction (SAED) pattern reveal the highly crystalline nature of the nanoparticles. From the diffuse reflectance spectroscopy, using Kubelka-Monk theory, the direct bandgap energy is estimated to be 5.61 eV for the undoped Y2O3, which is found to decrease upon Dy3+ doping. The room-temperature excitation spectra of the nanoparticles recorded at 575 nm emission wavelength comprise several excitation bands corresponding to the f-f transitions of Dy3+ ions in the host lattice. The photoluminescence spectra of the nanoparticles excited at the wavelength of 350 nm comprise three visible emission peaks at 477 nm (blue), 573 nm (yellow), and 666 nm (red). It has been concluded that the 0.5 mol% Dy-doped Y2O3 nanoparticles are the potential candidate to be used for solid-state luminescent device applications.  相似文献   

18.
A straightforward aqueous synthesis of MoO3?x nanoparticles at room temperature was developed by using (NH4)6Mo7O24?4 H2O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as‐prepared products are nanoparticles with diameters of 90–180 nm. The diffuse reflectance UV‐visible‐near‐IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible‐light and near‐infrared region, such nanostructures exhibit an enhancement of activity toward visible‐light catalytic hydrogen generation. MoO3?x nanoparticles synthesized with a molar ratio of MoVI/MoV 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as‐prepared plasmonic MoO3?x nanoparticles, which reveals its potential application in visible‐light catalytic hydrogen production.  相似文献   

19.
Abstract

Cationic nanocrystalline TiO2 particles have been synthesized for which the size and composition of the nanoparticles were analyzed by a transmission emission microscopy and energy dispersive x‐ray spectrometer (EDXS). Multilayered films have been fabricated by sequential adsorption of TiO2 nanoparticles and poly(3‐thiophene acetic acid) (PTAA). Each layer of the nanoparticles and PTAA in the thin film has also been characterized by x‐ray photoelectron spectroscopy, atomic force microscopy, and UV‐visible spectroscopy. These types of multilayered nanocomposite films may find applications in the fabrication of efficient light harvesting photovoltaic cells.  相似文献   

20.
A series of hexaaluminates, La0.8A0.2MnAl11O19−δ samples (A = Ba, Ca, Sr and Y) as new catalysts were prepared by carbonate precipitation and calcined at high temperature. The structure and properties of these samples were characterized by XRD, BET and XPS techniques. Upon calcination at 1200°C, the hexaaluminate structure was formed and it retained the specific surface area of 17∼20 m2g−1. The La0.8Ca0.2MnAl11O19−δ catalyst has a surface area of 19.3 m2g−1 and shows a good activity in CH4 combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号