首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cationic metal species normally function as Lewis acids, accepting electron density from bound electron-donating ligands, but they can be induced to function as electron donors relative to dioxygen by careful control of the oxidation state and ligand field. In this study, cationic vanadium(IV) oxohydroxy complexes were induced to function as Lewis bases, as demonstrated by addition of O2 to an undercoordinated metal center. Gas-phase complex ions containing the vanadyl (VO2+), vanadyl hydroxide (VOOH+), or vanadium(V) dioxo (VO2+) cation and nitrile (acetonitrile, propionitrile, butyronitrile, or benzonitrile) ligands were generated by electrospray ionization (ESI) for study by multiple-stage tandem mass spectrometry. The principal species generated by ESI were complexes with the formula [VO(L)n]2+, where L represents the respective nitrile ligands and n=4 and 5. Collision-induced dissociation (CID) of [VO(L)5]2+ eliminated a single nitrile ligand to produce [VO(L)4]2+. Two distinct fragmentation pathways were observed for the subsequent dissociation of [VO(L)4]2+. The first involved the elimination of a second nitrile ligand to generate [VO(L)3]2+, which then added neutral H2O via an association reaction that occurred for all undercoordinated vanadium complexes. The second [UO(L)4]2+ fragmentation pathway led instead to the formation of [VOOH(L)2]+ through collisions with gas-phase H2O and concomitant losses of L and [L+H]+. CID of [VOOH(L)2]+ caused the elimination of a single nitrile ligand to generate [VOOH(L)]+, which rapidly added O2 (in addition to H2O) by a gas-phase association reaction. CID of [VONO3(L)2]+, generated from spray solutions created by mixing VOSO4 and Ba(NO3)2 (and precipitation of BaSO4), caused elimination of NO2 to produce [VO2(L)2]+. CID of [VO2(L)2]+ produced elimination of a single nitrile ligand to form [VO2(L)]+, a V(V) analogue to the O2-reactive V(IV) species [VOOH(L)]+; however, this V(V) complex was unreactive with O2, which indicates the requirement for an unpaired electron in the metal valence shell for O2 addition. In general, the [VO2(L)2]+ species required higher collisions energies to liberate the nitrile ligand, suggesting that they are more strongly bound than the [VOOH(L)2]+ counterparts.  相似文献   

2.
Ten homologous or isomeric singly, doubly, triply and quadruply charged cationic macrocyclic complexes I-Va, bn+ (n = 1-4) formed by the coordination of [Ru(bipy)2Cl]+ to the pyridyl N-atoms of a series of meso-(phenyl)m-(meta or para-pyridyl)n-porphyrins (m + n = 4) were transferred to the gas phase and structurally characterized by electrospray ionization (ESI) mass (MS) and tandem mass (MS/MS) spectrometry. Previously known to be stable in solution and in the solid state, I-Va, bn+ are found to constitute also a new class of stable, long-lived multiply charged gas-phase ions with spatially separated charge sites. Increasing intramolecular electrostatic repulsion from Ia, b+ to IVa, b3+ facilitates in-source and tandem collision-induced dissociation (CID). However, for the quadruply charged ions Va, b4+, electrostatic repulsion is alleviated mainly by ion pairing with the CF3SO3- counterion forming the salt clusters [Va,b/CF3SO3]3+ and [Va,b/(CF3SO3)2]2+ with reduced charge states. Ion-pairing that yields [IVa,b/CF3SO3]2+ is also observed as a minor ESI process for the triply charged ions IVa, b3+. The gaseous ions I-Va, bn+ (n = 2, 3 or 4) dissociate by sequential 'charge partitioning' with the formation of two cationic fragments by the release of [Ru(bipy)2Cl]+. The meta (a) and para (b) isomers and the positional isomers II2+ and III2+ display nearly identical ESI-MS and ESI-MS/MS spectra. ESI-MS/MS of I-Va, bn+ shows that the Ru-py(P) is, intrinsically, the weakest bond since this bond breaks preferentially upon CID.  相似文献   

3.
New cationic, pentacoordinate complexes [(TPA)Rh1(ethene)]+, [1a]+, and [(MeTPA)Rh1(ethene)]+, [1b]+, have been prepared (TPA = N,N,N-tri(2-pyridylmethyl)amine, MeTPA = N-[(6-methyl-2-pyridyl)-methyl]-N,N-di(2-pyridylmethyl)amine). Complex [1a]+ is selectively converted by aqueous HCl to [(TPA)RhIII-(ethyl)Cl]+, [2a]+. The same reaction with [1b]+ results in the [(MeTPA)RhIII-(ethyl)Cl]+ isomers [2b]+ and [2c]+. Treatment of [1a]+ and [1b]+ with aqueous H2O2 results in a selective oxygenation to the unsubstituted 2-rho-da(III)oxetanes (1-oxa-2-rhoda(III)cyclo-butanes) [(TPA)RhIII(kappa2-C,O-2-oxyethyl)]+, [3a]+, and [(MeTPA)RhIII(kappa2-C,O-2-oxyethyl)]+, [3b]+. The reactivity of 2-rhodaoxetanes [3a]+ and [3b]+ is dominated by the nucleophilic character of their 2-oxyethyl oxygen. Reaction of [3a]+ and [3b]+ with the non-coordinating acid HBAr(f)4 results in the dicationic protonated 2-rhodaoxetanes [(TPA)RhIII(kappa2-2-hydroxyethyl)]2+, [4a]2+, and [(MeTPA)RhIII(kappa2-2-hydroxyethyl)]2+, [4b]2+. These eliminate acetaldehyde at room temperature, probably via a coordinatively unsaturated kappa1-2-hydroxyethyl complex. In acetonitrile, complex [4a]2+ is stabilised as [(TPA)-RhIII(kappa1-2-hydroxyethyl)(MeCN)]2+, [5a]2+, whereas the MeTPA analogue [4b]2+ continues to eliminate acetaldehyde. Reaction of [3a]+ with NH4Cl and Mel results in the coordinatively saturated complexes [(TPA)RhIII(kappa1-2-hydroxyethyl)(Cl)]+, [6a]+, and [(TPA)-RhIII(kappa1-2-methoxyethyl)(I)+, [7a]+, respectively. Reaction of [3a]+ with NH4+ in MeCN results in formation of the dicationic metallacyclic amide [(TPA)-RhIII [kappa2-O,C-2-(acetylamino)ethyl]]2+, [9]2+, via the intermediates [4a]2+, [5a]2+ and the metallacyclic iminoester [(TPA)RhIII[kappa2-N,C-2-(acetimidoyloxy)ethyl]]2+, [8]2+. The observed overall conversion of the [Rh(I)(ethene)] complex [1a]+ to the metallacyclic amide [9]2+ via 2-rhodaoxetane [3a]+, provides a new route for the amidation of a [RhI(ethene)] fragment.  相似文献   

4.
A series of mononuclear, octahedral first-row transition metal ion complexes mer-[M(II)L0(2)](PF6)2 containing the tridentate neutral ligand 2,6-bis[1-(4-methoxyphenylimino)ethyl]pyridine (L0) and a Mn(II), Fe(II), Co(II), Ni(II), Cu(II), or Zn(II) ion have been synthesized and characterized by X-ray crystallography. Cyclic voltammetry and controlled potential coulometry show that each dication (except those of Cu(II) and Zn(II)) can be reversibly one-electron-oxidized, yielding the respective trications [M(III)L0(2)]3+, and in addition, they can be reversibly reduced to the corresponding monocations [ML2]+ and the neutral species [ML2]0 by two successive one-electron processes. [MnL2]PF6 and [CoL2]PF6 have been isolated and characterized by X-ray crystallography; their electronic structures are described as [Mn(III)L1(2)]PF6 and [Co(I)L0(2)]PF6 where (L1)1- represents the one-electron-reduced radical form of L0. The electronic structures of the tri-, di-, and monocations and of the neutral species have been elucidated in detail by a combination of spectroscopies: UV-vis, NMR, X-band EPR, Mossbauer, temperature-dependent magnetochemistry. It is shown that pyridine-2,6-diimine ligands are noninnocent ligands that can be coordinated to transition metal ions as neutral L0 or, alternatively, as monoanionic radical (L1)1-. All trications are of the type [M(III)L0(2)]3+, and the dications are [M(II)L0(2)]2+. The monocations are described as [Mn(III)L1(2)]+ (S = 0), [Fe(II)L0L1]+ (S = 1/2), [Co(I)L0(2)]+ (S = 1), [Ni(I)L0(2)]+ (S = 1/2), [Cu(I)L0(2)]+ (S = 0), [Zn(II)L1L0]+ (S = 1/2) where the Mn(II) and Fe(II) ions are low-spin-configurated. The neutral species are described as [Mn(II)L1(2)]0, [Fe(II)L1(2)]0, [Co(I)L0L1]0, [Ni(I)L0L1]0, and [Zn(II)L1(2)]0; their electronic ground states have not been determined.  相似文献   

5.
The electronebulization of a cobalt(II)/cysteine(Cys) mixture in water/methanol (50/50) produced mainly cobalt-cationized species. Three main groups of the Co-cationized species can be distinguished in the ESI-MS spectrum: (1) the cobalt complexes including the cysteine amino acid only (they can be singly charged, for example, [Co(Cys)n- H]+ with n = 1-3 or doubly charged such as [Co + (Cys)2]2+); (2) the cobalt complexes with methanol: [Co(CH3OH)n- H]+ with n = 1-3, [Co(CH3OH)4]2+; and (3) the complexes with the two different types of ligands: [Co(Cys)(CH3OH) - H]+. Only the singly charged complexes were observed. Collision-induced dissociation (CID) products of the [Co(Cys)2]2+, [Co(Cys)2 - H]+ and [Co(Cys) - H]+ complexes were studied as a function of the collision energy, and mechanisms for the dissociation reactions are proposed. These were supported by the results of deuterium labelling experiments and by density functional theory calculations. Since [Co(Cys) - H]+ was one of the main product ions obtained upon the CID of [Co(Cys)2]2+ and of [Co(Cys)2 - H]+ under low-energy conditions, the fragmentation pathways of [Co(Cys) - H]+ and the resulting product ion structures were studied in detail. The resulting product ion structures confirmed the high affinity of cobalt(II) for the sulfur atom of cysteine.  相似文献   

6.
As a means of generating fixed-charge peptide radicals in the gas phase we have examined the collision-induced dissociation (CID) chemistry of ternary [Cu(II)(terpy)(TMPP-M)]2+ complexes, where terpy = 2,2':6'2'-terpyridine and TMPP-M represents a peptide (M) modified by conversion of the N-terminal amine to a [tris(2,4,6-trimethoxyphenyl)phosphonium]acetamide (TMPP-) fixed-charge derivative. The following modified peptides were examined: oligoglycines, (Gly)n (n = 1-5), alanylglycine, glycylalanine, dialanine, trialanine and leucine-enkephaline (YGGFL). The [Cu(II)(terpy)(TMPP-M)]2+ complexes are readily formed upon electrospray ionization (ESI) of a mixture of derivatized peptide and [Cu(II)(terpy)(NO3)2] and generally fragment to form transient peptide radical cations, TMPP-M+*, which undergo rapid decarboxylation for the simple aliphatic peptides. This is contrasted with the complexes containing the unmodified peptides, which predominantly undergo fragmentation of the coordinated peptide. These differences demonstrate the importance of proton mobility in directing fragmentation of ternary copper(II) peptide complexes. In the case of leucine-enkephaline, a sufficient yield of the radical cation was obtained to allow further CID. The TMPP-YGGFL+* ion showed a rich fragmentation chemistry, including CO2 loss, side-chain losses of an isopropyl radical, 2-methylpropene and p-quinomethide, and *a1 and *a4 sequence ion formation. In contrast, the even-electron TMPP-YGGFL+ ion fragments to form *a(n) and *b(n) sequence ions as well as the [*b4 + H2O]+ rearrangement ion.  相似文献   

7.
An electrosprayed water/methanol solution of guanosine and Cu(NO3)2 was observed to give rise to gas-phase copper complexed ions of [CuLn]*2+, [CuL(MeOH)n]*2+, and [CuG n(NO3)]*+, as well as the ions [L]*+, [L+H]+, [G]*+, and [G+H]+ (L=guanosine, G=guanine). The Collision-Induced Dissociation (CID) of [CuL3]*2+ and [CuL(MeOH)n]*2+ (n=2, 3) generates guanosine radical cations [L]*+, while dimeric guanosine radical cations [L2]*+ are generated in the dissociation of [CuL4]*2+. Protonated guanosine [L+H]+ is one of the main products in the primary dissociation of [CuL2]*2+, while the dissociation of the higher-order [CuG2]*2+ produces the [G]*+ radical cation. The guanosine dimer radical cation, [L2]*+ presumably arises from the interaction of two guanosine molecules via proton and hydrogen bonding and is observed to dissociate into [L+H]+ and [L-H]* at low energies. We propose that the first two ligands bind strongly with Cu(II) through N7 and O6 to form a [CuL2]*2+ complex with a four-coordinated planar structure and that a third ligand binds loosely with copper to form [CuL3]*2+. Additional ligation observed in the formation of [CuLn]*2+ (n相似文献   

8.
The highly reactive mixed anhydrides [TcO3(OCOPh)] and [TcO3(OBF3)]- were synthesized by treatment of [TcO4]- with strong Lewis acids benzoyl chloride and BF3.OEt2. These mixed anhydrides, prepared in situ, were used as precursors for the synthesis of complexes containing the [TcO3]+ core. Subsequent reactions with bi- or tridentate ligands resulted in new complexes comprised of the [TcO3]+ core. As examples with bidentate ligands, the classical complexes [TcO3Cl(bipy)] (1) (bipy = 2,2'-bipyridine) and [TcO3Cl(phen)] (2) (phen = 1,10-phenanthroline) have been prepared by this strategy and structurally characterized. The new compounds [TcO3(bpza)] (3) (bpza = di-1H-pyrazol-1-ylacetate), [TcO3(bpza*)] (4) (bpza* = bis(3,5-dimethyl-1H-pyrazol-1-yl)acetate), [TcO3(tpzm*)]+ (6) (tpzm* = 1,1,1-methanetriyltris(3,5-dimethyl-1H-pyrazole), and [ReO3(tpzm*)][ReO4] (7) are examples of complexes with tripod ligands. The complexes have been structurally characterized, and their 99Tc NMR spectra have been recorded. As a common feature, the X-ray structures show a distinct widening of the O-Tc-O angles, almost to a tetrahedral angle. With the perspective of radiopharmaceutical applications, water stability and reactivities toward alkenes are described.  相似文献   

9.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

10.
Yue YF  Liang J  Gao EQ  Fang CJ  Yan ZG  Yan CH 《Inorganic chemistry》2008,47(14):6115-6117
Two 2D Mn (II) complexes, [Mn3(TzDC)2(phen)3] x 2 H2O (1; H3TzDC = 1,2,3-triazole-4,5-dicarboxylic acid, phen = 1,10-phenanthroline) and [Mn3(TzDC)2(bipy)3] x 4 H2O (2; bipy = 2,2'-bipyridine), were synthesized by hydrothermal reactions and characterized magnetically, and complex 1 was the first example of the chiral complex with a Kagomé lattice connectivity obtained through spontaneous resolution.  相似文献   

11.
This study describes the application of electrospray ionization mass spectrometry(ESI-MS) to investigate copper ion interaction with amoxicillin. ESI mass spectra of Cu–amoxicillin complexes show complex ions at m/z 828, 792, 753, 731, 428, 388 and 366 corresponding to [63Cu+(2A-H)+2H2 O]+, [63Cu+(2A-H)]+, [2A+Na]+, [2A+H]+, [63Cu+(A-H)]+, [A+Na]+and [A+H]+(where A = amoxicillin). Based on the observed m/z values of Cu–amoxicillin complex ions, it is found that the Cu–amoxicillin ratios are 1:1 and 1:2, and the copper ions exhibited three feasible coordination numbers(2, 4 and 6) with amoxicillin complexes. The structures and coordination numbers of copper–amoxicillin complex ions were probed from their collisionally activated dissociation(CAD) spectra. Based on these results, it is confirmed that the copper ions could form stable tetrahedral and octahedral complexes with amoxicillin. This study validates the applicability of ESI-MS for probing copper–amoxicillin complex ions.  相似文献   

12.
Two novel CuII3MnIII2 pentanuclear oxalato complexes have been synthesized and characterized, namely [Cu(L)]3[Mn(ox)3]2 [L = 1,10-phenanthroline(phen) and 2,2-bipyridyl(bipy)] where ox is the oxalate dianion. Based on i.r., elemental analyses and electronic spectra, thesecomplexesareassignedtoextendedoxalato-bridged structures consisting of two manganese(III) ions and three copper(II) ions, in which each manganese(III) has a distorted octahedral environment and each copper(II) ion a distorted square pyramidal environment. The temperature dependance of the magnetic susceptibility for [Cu(phen)]3[Mn(ox)3]2·4H2O was measured over the 4.2–300K range and the observed data indicates antiferromagnetic spin exchange interaction between the CuII and MnIII ions.  相似文献   

13.
Compounds based on the Mn-tda unit (tda=S(CH(2)COO)(2)(-2) ) and N co-ligands have been analyzed in terms of structural, spectroscopic, magnetic properties and DFT calculations. The precursors [Mn(tda)(H(2)O)](n) (1) and [Mn(tda)(H(2)O)(3)]·H(2)O (2) have been characterized by powder and X-ray diffraction, respectively. Their derivatives with bipyridyl-type ligands have formulas [Mn(tda)(bipy)](n) (3), [{Mn(N-N)}(2)(μ-H(2)O)(μ-tda)(2)](n) (N-N=4,4'-Me(2)bipy (4), 5,5'-Me(2)bipy, (5)) and [Mn(tda){(MeO)(2)bipy}·2H(2)O](n) (6). Depending on the presence/position of substituents at bipy, the supramolecular arrangement can affect the metal coordination type. While all the complexes consist of 1D coordination polymers, only 3 has a copper-acetate core with local trigonal prismatic metal coordination. The presence of substituents in 4-6, together with water co-ligands, reduces the supramolecular interactions and typical octahedral Mn(II) ions are observed. The unicity of 3 is also supported by magnetic studies and by DFT calculations, which confirm that the unusual Mn coordination is a consequence of extended noncovalent interactions (π-π stacking) between bipy ligands. Moreover, 3 is an example of broken paradigm for supramolecular chemistry. In fact, the desired stereochemical properties are achieved by using rigid metal building blocks, whereas in 3 the accumulation of weak noncovalent interactions controls the metal geometry. Other N co-ligands have also been reacted with 1 to give the compounds [Mn(tda)(phen)](2)·6H(2)O (7) (phen=1,10-phenanthroline), [Mn(tda)(terpy)](n) (8) (terpy=2,2':6,2'-terpyridine), [Mn(tda)(pyterpy)](n) (9) (pyterpy=4'-(4-pyridyl)-2,2':6,2'-terpyridine), [Mn(tda)(tpt)(H(2)O)]·2H(2)O (10) and [Mn(tda)(tpt)(H(2)O)](2)·2H(2)O (11) (tpt=2,4,6-tris(2-pyridyl)-1,3,5-triazine). Their identified mono-, bi- or polynuclear structures clearly indicate that hydrogen bonding is variously competitive with π-π stacking.  相似文献   

14.
Capillary electrophoresis (CE) and electrospray ionisation (ESI) mass spectra of aqueous solutions of manganese(II) complexes of the monoanions of the pentadentate ligands N-methyl-N'-carboxymethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine (mcbpen(-)) and N-benzyl-N'-carboxymethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine (bcbpen(-)), show the presence of a mixture of closely related Mn(II) species, assigned to the mono, di-, tri- and poly-cationic complexes [Mn(II)(L)(H(2)O)](n)(n+), L = mcbpen(-) or bcbpen(-) with n = 1, 2, 3, etc. In solution, these complexes are reversibly oxidized by tert-butyl hydrogen peroxide (TBHP), (NH(4))(2)[Ce(NO(3))(6)], Ce(ClO(4))(4), oxone and [Ru(bipy)(3)](3+) to form metastable (t(?) = min to h) higher valent (hydr)oxide species, showing a collective maximum absorbance at 430 nm. The same species can be produced by [Ru(bipy)(3)](2+)-mediated photooxidization in the presence of an electron acceptor. TBHP oxidation of the complexes, in large excesses of the TBHP, is concurrent with an O(2) evolution with turnovers of up to 1.5 × 10(4) mol of O(2) per mol of [Mn] and calculated rate constants from two series of experiments of 0.039 and 0.026 mol[O(2)] s(-1) M(-2). A 1:1 reaction of TBHP with [Mn] is rate determining and the resultant species is proposed to be the mononuclear, catalytically competent, [Mn(IV)(O)(mcbpen)](+). At very close m/z values [Mn(III)(OH)(mcbpen)](+), [Mn(2)(III/IV)(O)(2)(mcbpen)(2)](+) and [Mn(IV)(2)(O)(2)(mcbpen)(2)](2+) are detected by ESI MS and CE when the concentration of TBHP is comparable to or lower than that of [Mn]. These are conditions that occur post catalysis and these species are derived from [Mn(IV)(O)(mcbpen)](+) through condensation reactions.  相似文献   

15.
Hou H  Li L  Zhu Y  Fan Y  Qiao Y 《Inorganic chemistry》2004,43(15):4767-4774
Treatment of p-ferrocenylbenzoate [p-HOOCH4C6Fc, Fc = (eta5-C5H5)Fe(eta5-C5H5)] with Mn(OAc)2 x 2H2O or Cd(OAc)2 x 2H2O afforded one-dimensional linear chain polymer [[Mn(OOCH4C6Fc)2(mu2-OH2)(H2O)2](H2O)]n (1), double-bridge polymer [Mn(mu2-OOCH4C6Fc)2(phen)]n (phen = phenanthroline) (2), and ladderlike framework [[Cd(mu2-OOCH4C6Fc)(eta2-OOCH4C6Fc)(bbp)](CH3OH)]n (bbp = 4,4'-trimethylene-dipyridine) (3). The solution-state cyclic voltammograms indicate that the half-wave potentials of the ferrocenyl moieties in these polymers are all shifted to positive potential compared to that of sodium p-ferrocenylbenzoate. Both 1 and 2 behave as 1D Heisenberg Mn(II) chains with weak intrachain antiferromagnetic interactions between the local high-spin Mn(II) ions, and the exchange coupling parameters J (-5.20 and -3.25 cm(-1) for 1 and 2, respectively) are larger than those of most of the reported di-Mn(II) complexes that contain mu2-aqua and mu2-carboxylato units and one-dimensional Mn(II) carboxylic polymers.  相似文献   

16.
1INTRODUCTIONThecoordinationchemistryofmanganeseinthe 2, 3and 4oxidationstatesisreceivingconsiderableattentionduetothebio1ogicalimportanceoftheseions(1i.Anattractivesystemformode1ingthestructureandreactivityofsomemanganoenzymesisbinuclearMn(M)complexescontainingpolydentateSchiffbaseligands.Bothphotochemicalwateroxidationtogeneratedioxygen"'andacid-pro-motedhydrogenperoxideproductiont3ihavebeenreportedforsuchdimer.Wereportherethestructureofthetitlecomplex.2EXPERIMENTAL2.lSynthesisof…  相似文献   

17.
采用水热法合成了{[Cu(phen)(H2O)(o-tpha)]·H2O}n(1), [Cu2Cl4(phen)2](2), [Cu4Cl4·(bipy)2](3)和[Cu2Cl2(phen)]n(4)(bipy=2,2'-bipyridyl, phen=1,10-phenanthroline, o-H2tpha=o-phthalic acid)4个铜配合物. X射线单晶衍射结果表明, 配合物1和4是具有一维无限结构的聚合物, 配合物2是双核Cu(Ⅱ) 配合物并由氢键连成超分子, 配合物3是四核Cu(Ⅰ) 簇合物. 常温下测定了4个配合物的表面光电压光谱(SPS)、场诱导表面光电压光谱(FISPS)、IR和UV-Vis-NIR光谱. SPS的测试结果显示, 4个化合物均在300~800 nm范围内存在光伏响应带, 但是它们呈现了不同的特性. 配合物1~3的表面光电压光谱呈现出正的表面光伏响应(SPV), 配合物4的SPS呈现出负的表面光伏响应. 4个配合物的表面光伏响应带的位置、数量以及强度均有明显不同.  相似文献   

18.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

19.
The reaction of the complex [Mo(OTf)(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (1) (OTf = trifluoromethylsulfonate; phen = 1,10-phenanthroline) with tetrabutylammonium fluoride trihydrate afforded the fluoride complex [MoF(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (2). The IR spectrum and the oxidation potential of 2 reflect the fact that its metal center is more electron-rich than that of the chloro analogue [MoCl(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)]. Compound 2 reacted with 1 affording the homobinuclear complex [[Mo(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)](2)(mu-F)][OTf] (3), with a fluoride bridge. Compound 2 also reacts with the species generated in situ by triflate abstraction from [M(OTf)(CO)(3)('N-N')] (M = Mn, Re; 'N-N' = 2,2'-bipyridine (bipy), phen) using NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), affording the heterobinuclear complexes [[Mo(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)](mu-F)[M(CO)(3)('N--N')]][BAr'(4)] (M = Mn, 'N-N' = bipy (4); M = Re, 'N-N' = phen (5)). All new compounds have been characterized by spectroscopic methods (IR and NMR) and, in the case of 1, 2, 3, and 4, also by means of X-ray diffraction analysis.  相似文献   

20.
Jiang L  Feng XL  Lu TB  Gao S 《Inorganic chemistry》2006,45(13):5018-5026
The preparation and crystal structures of five cyano-bridged Fe-Mn complexes, [(bipy)2Fe(II)(CN)2Mn(II)(bipy)2]2(ClO4)4 (1), [(bipy)2Fe(II)(CN)2Mn(II)(DMF)3(H2O)]2(ClO4)4 (2), {[(Tp)Fe(III)(CN)3]2Mn(II)(DMF)2(H2O)}2 (3), {[(Tp)Fe(III)(CN)3]2Mn(II)(DMF)2}n (4), and Na2[Mn(II)Fe(II)(CN)6] (5) (bipy = 2,2'-bipyridine, Tp = tris(pyrazolyl)hydroborate), are reported here. Compounds 1-4 contain the basic Fe2(CN)4Mn2 square building units, of which 1-3 show the motif of discrete molecular squares of Fe2(CN)4Mn2 and 4 possesses a 1D double-zigzag chain-like structure, while compound 5 is a 3D cubic framework analogous to that of Prussian blue. Compounds 1 and 2 show weak ferromagnetic interactions between two Mn(II) ions through the bent -NC-Fe(II)-CN- bridges. Compound 3 shows weak antiferromagnetic coupling between the Fe(III) and Mn(II) ions, while compound 4 displays a metamagnetic-like behavior with TN = 5.2 K and Hc = 10.5 kOe. Compound 5 exhibits a ferromagnetic ordering with Tc= 3.5 K, coercive field, Hc, = 330 G, and a remnant magnetization of 503 cm3 Oe mol(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号