首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An ion-beam apparatus is employed to study the reaction of Ni+ with H2, HD, and D2 as a function of kinetic energy. These reactions lead to the endothermic formation of NiH+, NiH+ and NiD+, and NiD+, respectively. Interpretation of the threshold for these processes yields the average bond energies, D0(Ni+H) = 1.86 ± 0.09 eV and D0(Ni+D) = 1.90 ± 0.14 eV. The total reaction cross sections for all three systems are similar; however, a striking isotope effect is observed for Ni+ reacting with HD. The dependence of the cross sections on relative kinetic energy is discussed in terms of simple models for reaction.  相似文献   

2.
3.
The tandem quadrupole photodissociation mass spectrometer has been used to study photodissociation reactions of Ar+2, Ne+2, and (CO2)+2. The cross sections for photodissociation of Ar+2 exhibited a strong dependence on ion source pressure, varying from 2 × 10 ?18cm2 at 0.1 torr to 6 × 10?19cm2 at 0.5 torr. A large photodissociation cross section (2 × 10?17cm2 for the reaction (CO2)+2 → CO+2+ CO2 was observed at the red end of the visible spectrum (580–620 nm) suggesting that this may be an important reaction in CO2 rich planetary ionspheres such as that of Mars.  相似文献   

4.
C2(a 3πu) disappearance rate constants of 1.44, 0.96, 0.0296, 0.0130 and < 10?6(x10?10cm3s?1) are reported for reactions with C2H4, C2H2, O2, C2H6, and CH4, respectively at 298 K. C2(a 3πu) fragments are generated by multiphoton ArF excimer laser photodissociation at C2H2, and monitored by dye laser induced fluorescence. Arguments are presented which favor chemical reactions over the C2(a 3πu) → (X 1σ+g) quenching channel. C2 + C2H2 represents the one possible exception to the reactive channel.  相似文献   

5.
A fluorescence excitation spectrum of (CH3)2CHO (isopropoxy radical) is reported following photolysis of isopropyl nitrite at 355 nm. Rate constants for the reaction of isopropoxy with NO, NO2, and O2 have been measured as a function of pressure (1–50 Torr) and temperature (25–110°C) by monitoring isopropoxy radical concentrations using laser-induced fluorescence. We have obtained the following Arrhenius expressions for the reaction of isopropoxy with NO and O2 respectively: (1.22±0.28)×10?11 exp[(+0.62±0.14 kcal)/RT]cm2/s and (1.51±0.70)×10?14 exp[(?0.39±0.28)kcal/RT]cm3/s where the uncertainties represent 2σ. The results with NO2 are more complex, but indicate that reaction with NO2 proceeds more rapidly than with NO contrary to previous reports. The pressure dependence of the thermal decomposition of the isopropoxy radical was studied at 104 and 133°C over a 300 Torr range using nitrogen as a buffer gas. The reaction is in the fall-off region over the entire range. Upper limits for the reaction of isopropoxy with acetaldehyde, isobutane, ethylene, and trimethyl ethylene are reported.We have performed the first LIF study of the isopropoxy radical. Arrhenius parameters were measured for the reaction of i-PrO with O2, NO, NO2, using direct radical measurement techniques. All reactions are in their high-pressure limits at a few Torr of pressure. The rate constant for the reactions of i-PrO with NO and NO2 reactions exhibit a small negative activation energy. Studies of the i-PrO + NO2 reaction produce data which indicate that O(3P) reacts rapidly with i-PrO. Unimolecular decomposition studies of i-PrO indicate that the reaction is in the fall-off region between 1 and 300 Torr of N2 and the high-pressure limit is above 1 atmosphere of N2.  相似文献   

6.
The decay of NH2 radicals, from 193 nm photolysis of NH3, was monitored by 597.7 nm laser-induced fluorescence. Room-temperature rate constants of (1.21 ± 0.14) × 10?10, (1.81 ± 0.12) × 10?11, and (2.11 ± 0.18) × 10?11 cm3 molecule?1 s?1 were obtained for the reactions of NH2 with N, NO and NO2, respectively. The production of NH in the reaction of NH2 with N was observed by laser-induced fluorescence at 336.1 nm.  相似文献   

7.
For studying the sulfation of Al2O3, CaO, CdO and ZnO with (NH4)2SO4, free energy values have been calculated for possible reactions utilising the available thermodynamic data. Further differential thermal analysis has been carried out to find out the exact reaction. The ΔH0 values calculated theoretically and that from DTA peak are very close in case of CaO and ZnO, whereas in the other two cases there is no proper match. The mismatch may be due to some uncertainty in thermodynamic values and the possibility of some side reactions.  相似文献   

8.
The CL spectra of the title reactions and their pressure dependences have been studied over the 5 × 10?6 ? 5 × 10?3 torr range in a beam-gas experiment. In the Sm + N2O, O3 and Yb + O3 reactions simple bimolecular formation of the short lived (radiative lifetime τR < 3 × 10?6 s) MO* emitters dominates the entire pressure range. In the other systems Sm + (F2, Cl2), Yb + (F2, Cl2) the CL spectra are strongly pressure dependent, indicating extensive energy transfer from long-lived intermediates. Reaction mechanisms are suggested. The quantum yields Φ, obtained by calibrating relative quantum yields with Dickson and Zare's absolute value for Sm + N2O [Chem. Phys. 7 (1975) 367], range from Φ = 2.3% (for Sm + F2, the most efficient reaction) down to Φ = 0.005% for Yb + Cl2. The following lower limit estimates were obtained for the product dissociation energies from the short wavelength CL cutoffs: D00(SmF) ? 121.3 ± 2.4 kcal/mole, D00(SmCl) ? ? 100 ± 3 kcal/mole, D00(YbO) ? 94.2 ± 1.5 kcal/moie, D00(YbF) ? 123.7 ± 2.3 kcal/mole.  相似文献   

9.
Studies are made of the visible chemiluminescence resulting from the reaction of an atomic beam of samarium or europium with O3, N2O, NO2 and F2 under single-collision conditions (~10?4 torr). The spectra obtained for SmO, EuO, SmF, and EuF are considerably more extensive than previously observed. The variation of the chemiluminescent intensity with metal flux and with oxidant flux is investigated, and it's concluded that the reactions are bimolecular. From the short wavelength curoff of the chemiluminescent spectra, the following lower bounds to the ground state dissociation energies are obtained: D00(SmO) > 135.5 +- 0.7 kcal/mole, D00(EuO) > 131.4 ± 0.7 kcal/mole, D00(SmF) > 123.6 ± 2.1 kcal/mole, and D00(EuF) > 129.6 ± 2.1 kcal/mole. Using the Clausius-Clapeyron equation, the latent heats of sublimation are found to be ΔH1052 (Eu) = 42.3 ± 0.7 kcal/mole for europium and ΔH1084(Sm) = 47.9 ± 0.7 kcal/mole for samarium. Total phenomena- logical cross sections are determined for metal atom removal. Relative photon yields per product molecule are calculated from the integrated chemiluminescent spectra and it is found that Sm + F2 → SmF* + F is the brightest reaction. The comparison of the photon yields under single-collision conditions with those at several torr shows that energy transfer collisons play an important role in the mechanism for chemiluminescence at the higher pressures. A simple model is presented which explains the larger photon yields of the Sm reactions compared to the Eu reactions in terms of the greater number of electronic states correlating with the reactants in the case of samarium.  相似文献   

10.
Two copper(I) complexes [Cu(Cin2bda)2]ClO4 (I) and [Cu(Ncin2bda)2]ClO4 (II) have been prepared by the reaction of the ligands N2,N2′-bis(3-phenylallylidene)biphenyl-2,2′-diamine (L1) and N2,N2′-bis[3-(2-nitrophenyl)allylidene]biphenyl-2,2′-diamine (L2) and copper(I) salt. These compounds were characterized by CHN analyses, 1H NMR, IR, and UV-Vis spectroscopy. The C=N stretching frequency in the copper(I) complexes shows a shift to a lower frequency relative to the free ligand due to the coordination of the nitrogen atoms. The crystal and molecular structure of II was determined by X-ray single-crystal crystallography. The coordination polyhedron about the copper(I) center in the complex is best described as a distorted tetrahedron. A quasireversible redox behavior was observed for complexes I and II. The article is published in the original.  相似文献   

11.
The intensity of the chemiluminescence continua from the title reactions was measured in crossed effusive molecular beams as a function of halogen beam flux. The dominant quadratic pressure dependence of the Ba + Cl2, Br2, I2 reactions at halogen densities as low as ≈ 1011 molecules/cm3 indicates a three-body process (rapid collissional stabilization of a very long-lived collision complex) as the major mode of MX*2 formation, while a two-body process is discernible at the lowest X2 gas densities. The mechanism is discussed in some detail.  相似文献   

12.
This work describes solid-state reactions for the formation of the chalcopyrite compounds CuInSe2, CuGaSe2 and Cu(In,Ga)Se2 on atomic scale. The most important chalcopyrite formation reactions which were identified by the authors by real-time in situ X-ray diffraction in preceding experiments are (A) CuSe+InSe→CuInSe2, (B) Cu2Se+2 InSe+Se→2 CuInSe2 and (C) Cu2Se+In2Se3→2 CuInSe2. During the selenistaion of a metallic precursor containing gallium a separate fourth reaction occurs: (D) Cu2Se+Ga2Se3→2 CuGaSe2. The quaternary compound is finally formed by interdiffusion of CuInSe2 with CuGaSe2 (E). These five reactions differ in their activation energy and reaction speed. We explain these differences qualitatively by analysing the involved crystal structures for each reaction. It turns out that all reactions involved in the formation of Cu(In,Ga)Se2 are promoted by epitaxial relations, which facilitates the formation of polycrystalline thin films at temperatures much below those necessary for single crystal growth. Recommendations for the growth of larger grains of Cu(In,Ga)Se2 containing fewer defects are given.  相似文献   

13.
Cross section measurements for the proton transfer reactions of NH+4, CH3NH+3, and PH+4 with Ca(g) have been obtained over a range of low ion kinetic energies. For all reactions studied the cross sections drop sharply with increase in ion kinetic energy, indicating exothermic behavior. The results show that Ca(g) is an unusually strong base with a proton affinity in excess of 9.2 eV. Cross sections for the PH+4Ca reaction are an order to magnitude higher than those for the NH+4Ca reaction for ion energies between one and three eV. This effect is not explained by simple theories of ion-induced dipole interactions. It is suggested that the enhanced rate of the PH+4Ca reaction may be due to d-orbital participation.  相似文献   

14.
报道四核铜配合物[Cu2L2][Cu(pht)2]2[Hpht:苯妥英,即5,5-二苯基-2,2咪唑烷酮;L:N-(3-氨基丙基)二乙醇胺]的溶剂热合成、晶体结构及其性质研究.该晶体属单斜晶系,P21/n空间群,晶胞参数:a=0.9240(1)nm,b=2.4559(2)nm,c=1.5572(2)nm,β=97.489(2)o,V=3.5035(7)nm3,Dc=1.499Mg/m3(g/cm3),Z=2,F(000)=1636,μ=1.270mm-1,R1=0.0503,wR2=0.1135[I2σ(I)],GOF=1.014.XPS结合X射线单晶结构分析,表明该配合物分子有混价铜组成,包括两个Cu(I)和两个Cu(II),其中每个Cu(I)分别与两个苯妥英配体提供的氮原子配位,N—Cu(I)—N的夹角为177.1°,每个Cu(II)与L配体的五个配位原子配位(N2O3),形成一个稍变形四方锥结构,两个Cu(II)通过N-(3-氨基丙基)二乙醇胺中的一个羟基氧桥连接形成双核阳离子,琼脂扩散法测试结果表明配合物、配体和铜盐对3种受试细菌均有一定的活性.配合物与DNA的相互作用测定研究表明,该配合物是以插入方式与小牛胸腺DNA结合.  相似文献   

15.
Cleavage of the E-P bond in compounds of the type (CF3)2EPh2(E = P, As) is achieved by polar [HBr, (CF3)2EI, (CH3)3SnH, (CF3)2AsH] and non-polar [Br2, Mn2(CO)10] substances. Exchange reactions are possible with (CF34)E2 and P2F4 leading to the unsymmetrical compounds (CF3)2PPF2, (CF3)2AsPF2, (CF3)2PAs(CF3)2, F2PPH2, (CF3)2AsPH2. The reaction of (CF3)2PPH2 with Mn2(CO)10 gives the new binuclear complex Mn2(CO)8PH2P(CF3)2 and Mn2(CO)8[P(CF3)2]2. The hitherto unknown compound (CF3)2AsPF2 is obtained by the reaction of (CF3)2AsPH2 with P2F4. Adducts of (CF3)2PPH2 with B2H6 and (CH3)3N, respectively, are discussed. Investigation of the reaction route and characterization of most of the reaction product is based on 1H and 19F NMR spectral data.  相似文献   

16.
The reactions of the lowest metastable states of Ar, Kr and Xe with XeF2 were studied in a flowing afterglow apparatus; XeF emission (from D2Π12 and B 2Π+ states) was observed in all cases. The total rate constants (cm3 molecule?1 s?1) for XeF* formation were determined as 75 × 10?11 ? Xe(3P2);64 × 10?11 ? Kr(3P2) and 20 × 10?11 ? Ar(3P0,2). The reactions of Ar(3P0,2) and Kr(3P2) with XeF2 also gave ArF* and KrF*, respectively. Analysis of these emissions indicates that at least two different mechanisms are operative: reactive quenching by the ionic—covalent curve-crossing mechanism and excitation transfer. The Ar(3P0,2 + XeF2 reaction is a sufficiently strong source of XeF(D—X) emission that the main features of the XeF(D2Π12 ? X2Σ+) system could be photographed and tentative assignments of these vibrational bands are given. The XeF(D → B) emission could not be observed and the ratio of the D—X versus the D—B transition probability must be > 1000 : 1.  相似文献   

17.
Single crystals of the strontium copper tellurium oxochloride SrCu2(TeO3)2Cl2 were synthesized via solid-gas reactions in sealed evacuated silica tubes. The compound crystallizes in the monoclinic system, space group P21, a=7.215(2), b=7.2759(15), c=8.239(2) Å, β=96.56(4)°, Z=2. The building units are [SrO6Cl2] irregular polyhedra, [CuO4] and [CuO3Cl] square planes, [TeO3E] tetrahedra and [TeO3+1E] trigonal bipyramids; E being the 5s2 lone pair of Te(IV). The Cu atoms can be regarded as forming a chain of weakly connected dimers. The magnetic susceptibility of the compound shows a broad maximum typical for antiferromagnetic spin fluctuations with a non-magnetic ground state. A Heisenberg spin model with coupled s=1/2 dimers leads to a satisfactory fitting of the experimental data.  相似文献   

18.
An attempt has been made to calculate the free energy values for possible reactions utilising the available thermodynamic data in order to study the sulfation of CuO, Fe2O3, MnO2 and NiO with (NH4SO4, and further trials have been made to determine the exact reaction through differential thermal analysis. There is no real correlation between the theoretical value of ΔH° and that calculated from the DTA peak, which may be due to some uncertainty in the thermodynamic values and the possibility of some side reactions.  相似文献   

19.
CS radicals have been produced by photodissociation of CS2 at 193 nm and their disappearance monitored by LIF. The vibrationally excited CS radicals rapidly relax to CS(ν = 0). At 298 K, the rate coefficients for CS(ν = 0) reactions with O2, O3 and NO2 are (2.9 ± 0.4) × 10?19, (3.0 ± 0.4) × 10?16 and (7.6 ± 1.1) × 10?17 cm3 molecule?1 s?1 respectively. The quenching of CS(A 1II)ν=0 by He has a rate coefficient of (1.3 ± 0.2) × 10?12 cm3 molecule?1 s?1.  相似文献   

20.
The reaction of Cu(OH)2 and 2-hydrazino-2-imidazoline hydrobromide surprisingly resulted in complex compound where Cu(II) ions are chelated by a new ligand, namely bisimidazoline (biz). As has been found in the X-ray analysis, the [Cu(biz)2]2+ cations are accompanied by [Cu2Br4]2− anions, which makes the whole compound of metal-mixed-valency type. Both ions are centrosymmetric and quasi-planar. The Cu(II) coordination environment is a rectangle with almost equal Cu–N bond lengths (1.984(3), 1.987(3) Å). The electrostatic interaction of both complex ions is strengthened by two strong N–H···Br and four weaker (C–H···Br, C–H···N) hydrogen bonds. The relatively simple IR and Raman spectra were interpreted with help of quantum calculations carried out at the B3LYP/LanL2DZ level. The characterization of computed normal vibrations and correlating observed bands is given in terms of approximate D2h symmetry. The most intense band resulting from the Cu–N stretching vibration (B3u) was located at 342 cm−1, by 63Cu and 65Cu isotope substitution. The chemical reactions leading to the formation of presented compound are also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号