首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutral binary clusters of Pb-As, Pb-Se, Pb-Te, Bi-In and Bi-Te are generated by inert gas condensation in a double oven source and probed by electron impact. Cluster ions corresponding to the Zintl polyanions Pb 5 2? and Pb 9 4? with respect to atom and valence electron number, are strongly enriched by electron induced dissociation ((Pb2As3)+, (Bi4In)+, (Pb4As5)+, (Bi7In2)+). For the corresponding systems, no other compound cluster ions are enriched in a comparable manner. Enhanced stability is found for (Pbn?1As)+ (n=7, 10, 13) and (Bi3Te)+, which are isoelectronic with neutral ‘magic’ Pbn clusters and the very stable Bi4 molecule, respectively.  相似文献   

2.
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

3.
Thermodynamic data are reported for NH3 clustered about Bi+, Rb+, and K+ in the gas phase. Unusually strong bondings of NH3 to Bi+ suggests the probable importance of partial covalent bonding in stabilizing the first ligand cluster. Differences in relative bond strengths for NH3 and H2O about Rb+ andK+ are consistent with the results of extended Hückel calculations reported herein.  相似文献   

4.
Zintl phases are renowned for their diverse crystal structures with rich structural chemistry and have recently exhibited some remarkable heat‐ and charge‐transport properties. The ternary bismuthides RELi3Bi2 (RE = La–Nd, Sm, Gd, and Tb) (namely, lanthanum trilithium dibismuthide, LaLi3Bi2, cerium trilithium dibismuthide, CeLi3Bi2, praseodymium trilithium dibismuthide, PrLi3Bi2, neodymium trilithium dibismuthide, NdLi3Bi2, samarium trilithium dibismuthide, SmLi3Bi2, gadolinium trilithium dibismuthide, GdLi3Bi2, and terbium trilithium dibismuthide, TbLi3Bi2) were synthesized by high‐temperature reactions of the elements in sealed Nb ampoules. Single‐crystal X‐ray diffraction analysis shows that all seven compounds are isostructural and crystallize in the LaLi3Sb2 type structure in the trigonal space group Pm1 (Pearson symbol hP6). The unit‐cell volumes decrease monotonically on moving from the La to the Tb compound, owing to the lanthanide contraction. The structure features a rare‐earth metal atom and one Li atom in a nearly perfect octahedral coordination by six Bi atoms. The second crystallographically unique Li atom is surrounded by four Bi atoms in a slightly distorted tetrahedral geometry. The atomic arrangements are best described as layered structures consisting of two‐dimensional layers of fused LiBi4 tetrahedra and LiBi6 octahedra, separated by rare‐earth metal cations. As such, these compounds are expected to be valance‐precise semiconductors, whose formulae can be represented as (RE3+)(Li1+)3(Bi3−)2.  相似文献   

5.
Bismuth(II) Chalcogenometallates(III) Bi2M4X8, Compounds with Bi24+ Dumbbells (M = Al, Ga and X = S, Se) The ternary bismuth(II) chalcogenometallates(III) Bi2M4X8 (with M = Al, Ga and X = S, Se) were synthesized from the binary chalcogenides M2X3 and Bi2X3 and elementary bismuth. All compounds are diamagnetic semiconductors with Eg (opt.) = 1.8–2.7 eV. The phases (except Bi2Al4Se8) are thermodynamically stable and decompose peritectically above 965–1020 K. Bi2Al4Se8 is metastable below 825 K and is obtained only by rapid quenching from T > 825 K. The isotypic compounds crystallize in a new tetragonal tP28 structure type (P4/nnc). The characteristic unit is the hitherto unknown clustercation Bi24+, with the mean bond length d(Bi–Bi) = 314.2 pm, the Raman frequency 102 cm–1 ≤ νs ≤ 108 cm–1, and the mean force constant of f = 0.68 N · cm–1. The Electron Localization Function, ELF, shows the covalent Bi–Bi bond, the lone electron pairs of the ψ-octahedrally coordinated Bi(II) cations, and the polar character of the Bi–X bonds.  相似文献   

6.
Currently, with increasing demand for non-contact fluorescence intensity ratio-based optical thermometry, a novel phosphor with high-efficiency, dual-emitting centers, and differentiable temperature sensitivity is more and more urgent to develop. In this work, an efficient dual-emitting center optical thermometry with high sensitivity and multicolor tunable in Ca2Sb2O7:Bi3+, Eu3+ phosphor is firstly designed and successfully prepared. Under 330 nm excitation, the fabricated phosphor presents the featured and distinguishable emissions of Bi3+ and Eu3+ ions. The high efficiency energy transfer from Bi3+ to Eu3+ ions is proved and its corresponding mechanism belongs to dipole-dipole interaction. By modulating the ratio of Bi3+/Eu3+, the multicolor changes from blue to pink are realized. Based on the discriminative thermal quenching behavior between Bi3+ and Eu3+, the fluorescence intensity ratio of Eu3+ to Bi3+ in Ca2Sb2O7 samples illustrates excellent optical thermometry performance from 298 to 523 K. The maximum absolute sensitivity (Sa) and relative sensitivity (Sr) reach as high as 0.2773 K?1 at 523 K and 2.37% K?1 at 448 K, respectively. Notably, the discriminated surrounding temperature can be directly confirmed by observing the emitting color from purple to orange-red with the temperature increase from 298 to 523 K. Furthermore, the as-prepared phosphor materials also demonstrate outstanding repeatability and excellent reversibility. These results exhibit that the designed Ca2Sb2O7:Bi3+, Eu3+ phosphors have great promising applications in the field of non-contact optical temperature thermometry and thermochromic.  相似文献   

7.
《印度化学会志》2021,98(11):100225
The work presented here deals with the fabrication of bare Bi2O3 and modified Bi2O3 photocatalyst. The Bi2O3 material was modified with selected transition metals Co2+, Ni2+ with the 1% and 3% atomic weight percent insitu doping method via co-precipitation strategy. These three catalysts were successfully utilized for the waste water purification via photocatalytic degradation route. These all fabricated materials were precisely characterized by characterization techniques such as XRD, SEM, TEM, BET, IR and UV-DRS. The characterization techniques reveal the successful synthesis of material and effective modification of bismuth oxide lattice. Since, surface area for modified Bi2O3 was found to be enhanced in comparison to the bare Bi2O3, as well as declined band gap energy for modified Bi2O3 clearly indicates the successful doping of Co2+, Ni2+ metals. The bare Bi2O3 and modified Bi2O3 catalyst were employed for photocatalytic degradation of cationic dye R-HCl dye. The modified Bi2O3 found to be excellent over degradation efficiency of R-HCl with almost 97% of dye degradation in comparison to the bare Bi2O3. Reactive oxygen species experiment demonstrate that the addition of isopropyl alcohol (IPA), benzoquinone (BQ) and EDTA found to be successful to quench .OH, O2.- and h+ in photocatalysis mechanism. Additionally, the modified Bi2O3 was employed for phenol molecule degradation to investigate the possible excitation of this molecule under visible light irradiation.  相似文献   

8.
Heat capacity and enthalpy increments of ternary bismuth tantalum oxides Bi4Ta2O11, Bi7Ta3O18 and Bi3TaO7 were measured by the relaxation time method (2-280 K), DSC (265-353 K) and drop calorimetry (622-1322 K). Temperature dependencies of the molar heat capacity in the form Cpm=445.8+0.005451T−7.489×106/T2 J K−1 mol−1, Cpm=699.0+0.05276T−9.956×106/T2 J K−1 mol−1 and Cpm=251.6+0.06705T−3.237×106/T2 J K−1 mol−1 for Bi3TaO7, Bi4Ta2O11 and for Bi7Ta3O18, respectively, were derived by the least-squares method from the experimental data. The molar entropies at 298.15 K, S°m(298.15 K)=449.6±2.3 J K−1 mol−1 for Bi4Ta2O11, S°m(298.15 K)=743.0±3.8 J K−1 mol−1 for Bi7Ta3O18 and S°m(298.15 K)=304.3±1.6 J K−1 mol−1 for Bi3TaO7, were evaluated from the low-temperature heat capacity measurements.  相似文献   

9.
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3)  Å, V=1220.8(3)  Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional 2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing 1[Bi2S66−] and 1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMMQ3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum.  相似文献   

10.
Bi5AgNb4O18 is a new phase, which was discovered during the phase equilibrium study of the Bi2O3-Ag2O-Nb2O5 system. Bi5AgNb4O18 was prepared at 750°C and is stable in air up to its melting temperature of 1160.1±5.0°C (standard error of estimate). Results of a Rietveld refinement using neutron powder diffraction confirmed that Bi5AgNb4O18 is isostructural with Bi3TiNbO9, Bi5NaNb4O18, and Bi5KNb4O18. The structure was refined in the orthorhombic space group A21am, Z=2, and the lattice parameters are a=5.4915(2) Å, b=5.4752(2) Å, c=24.9282(8) Å, and V=749.52(4) Å3. The structure can be described as the m=2 member of the Aurivillius family, (Bi2O2)2+ (Am−1BmO3m+1)2− (where A=Bi and B=Ag, Nb), which is characterized by perovskite-like (Am−1BmO3m+1)2− slabs regularly interleaved with (Bi2O2)2+ layers. The octahedral [NbO6] units are distorted with Nb-O distances ranging from 1.856(4) to 2.161(2) Å and the O-Nb-O angles ranging from 82.6(3)° to 98.5(3)°. These octahedra are tilted about the a- and c-axis by about 10.3° and 12.4°, respectively. Ag was found to substitute exclusively into the Bi-site that is located in the layer between the two distorted [NbO6] units. Although the Ag substitutes into the Bi-site with the Bi:Ag ratio of 1:1, the existence of a superlattice was not detected using electron diffraction. A comparison of (Bi2O2)2+(Am−1NbmO3m+1)2− structures (where A=Ag, Na, and K) revealed a relation between the pervoskite tolerance factor, t, and structural distortion. The reference pattern for Bi5AgNb4O18 has been submitted to the International Centre for Diffraction Data (ICDD) for inclusion in the Powder Diffraction File.  相似文献   

11.
Composites ZrO2-(Bi2CuO4+ 20 wt % Bi2O3) (50–80 vol % ZrO2) are synthesized and their physicochemical properties are studied. It is demonstrated that the composites comprise triple-phase mixtures of ZrO2 of a monoclinic modification, Bi2CuO4, and solid solution Bi2?x Zr x O3 + x/2 and retain their mechanical strength up to 800°C. Impedance spectroscopy is used to examine their electroconductivity at 700–800°C in the interval of partial oxygen pressures extending from 37 to 2.1 × 104 Pa. Contributions made by electronic and ionic constituents to their overall conductivity are evaluated. The best specimens’ conductivity is ~0.01 S cm?1, with the electronic and ionic transport numbers nearly equal. The composite consisting of 50 vol % ZrO2 and 50 vol % (Bi2CuO4 + 20 wt % Bi2CuO4) is tested in the role of an oxygen-separating membrane. The selective flux of oxygen in the temperature interval 750–800°C amounts to (2.2–6.3) × 10?8 mol cm?2 s?1, testifying that these materials may be used as gas-separating membranes.  相似文献   

12.
In this study, red phosphors Ca1?n Mg n TiO3:Eu3+,Bi3+ were prepared by the sol?Cgel method and the impact of single dopant, co-dopants and solid solutions on the photoluminescence of the samples has been also investigated. Our results show that the crystal structure of the host does not have distinct changes when doped with Eu3+, Bi3+ and/or Mg2+. The emission intensity at 615?nm of Eu3+ increased at the presence of Bi3+ ions owing to the energy transfer from Bi3+ ion to Eu3+ ion. Moreover, with the addition of Mg2+, the red emission of the phosphor was further enhanced due to the stronger absorption at 399 and 467?nm, which match well with the emission of near-UV (395?C400?nm) and blue-LED (450?C470?nm), respectively. Under the near-UV (399?nm) or blue light (467?nm) excitation, the fluorescence quantum yield of the optimal composition Ca0.9Mg0.1TiO3:0.18Eu3+,0.018Bi3+ is 0.36 and 0.41, respectively, which possesses the higher photoluminescence intensity than CaMoO4:0.2Bi3+,0.05Eu3+ and the commercially available Y2O2S:Eu3+ phosphors under near-UV excitation. Based on these results, we are currently considering the potential application of Ca0.9Mg0.1TiO3:Eu3+,Bi3+ as a near-UV or blue-chip convertible red-emitting phosphor.  相似文献   

13.
Synthesis and Crystal Structure of Bi2ErO4I Bi2ErO4I was prepared by solid‐state reaction of stoichiometric mixture of BiOI, Bi2O3 and Er2O3. Bi2ErO4I is a new compound and the first bismuth rare earth oxide iodide. The crystal structure was determined by the Rietveldmethod (P4/mmm, a = 3,8896(6) Å, c = 9,554(2) Å, Z = 1). In this structure [M3O4]+‐layers are interleaved by single I‐layers. Er and Bi atoms of Bi2ErO4I are 8‐coordinated. The structure can be derived from the LiBi3O4Cl2‐structure type.  相似文献   

14.
Synthesis and Crystal Structures of (Ph4P)4[Bi8I28], (nBu4N)[Bi2I7], and (Et3PhN)2[Bi3I11] – Bismuth Iodo Complexes with Isolated and Polymeric Anions Solutions of BiI3 in methanol react with NaI and (nBu4N)(PF6) or (Et3NPh)(PF6) to form anionic bismuth iodo complexes (nBu4N)[Bi2I7] 1 and (Et3PhN)2[Bi3I11] 2 . In 1 Bi4I16 units, and in 2 Bi6I24 units are linked by common I-atoms to onedimensional infinite chains. Reaction of BiI3 with (Ph4P)(PF6) in methanol yields (Ph4P)4[Bi8I28] 3 . The anions of 1–3 consist of edge-sharing BiI6 octahedra. (nBu4N)[Bi2I7] 1 : Space group I2/m (No. 13), a = 1 082.3(5), b = 2 597.1(13), c = 1 206.1(6) pm, β = 93.17(2)°, V = 3 385(3) · 106 pm3; (Et3PhN)2[Bi3I11] 2 : Space group P1 (No. 2), a = 1 283.5(6), b = 1 345.9(7), c = 1 546.3(8) pm, α = 83.87(2), β = 74.24(2), γ = 68.26(2)°, V = 2 388(2) · 106 pm3; (Ph4P)4[Bi8I28] 3 : Space group P1 (No. 2), a = 1 329.3(4), b = 1 337.0(4), c = 2 193.1(5) pm, α = 104.20(2), β = 99.73(2), γ = 100.44(2)°, V = 3 622(2) · 106 pm3.  相似文献   

15.
The structures of the compounds initially reported to be 7·Bi2O3·ZnO and 96·Bi2O3·4Fe2O3, have been determined by X ray methods. Three dimensional, absorption corrected diffractometer data were used and atomic parameters were refined by least-squares procedures. The structures are isomorphous, cubic witha = 10.194(3)and10.179(3)A?, respectively, and space group I23. Each Bi3+ ion is surrounded by five oxygen atoms that form an incomplete octahedral arrangement with BiO distances ranging from 2.07–2.60A?. The6s2inert electron pair completes the octahedron. The Bi3+ ions are vibrating anisotropically. Tetrahedral sites in the structures contain 61 and 46 electrons, respectively. These values are consistent with a statistical distribution of Zn2+ and Bi5+ ions or Fe3+ and Bi5+ ions on these sites. Molar ratios are derived that agree with the observed distributions of electron density and give rise to perfectly stoichiometric systems, devoid of cationic or anionic vacancies. The compositions studied correspond to Bi3+24Bi5+Fe3+O40 and Bi3+36Bi5+2ZnO60 and they are optical enantiomorphs.It is proposed that a reduction in the percentage composition of Bi2O5 leads to metastable phases, in which all atomic positions remain fully occupied but some tetrahedral sites contain Bi3+ ions. The end product of the series is γ-Bi2O3 in which 50% of these sites contain Bi3+ and the remainder Bi5+ ions. We believe that γ-Bi2O3 is Bi3+25Bi5+O40.  相似文献   

16.
It was earlier found from nuclear quadrupole resonance (NQR) measurements and computer modeling that -Bi2O3, Bi3O4Br and mixed oxides Bi2O3· 2Al2O3, Bi2O3· 2Ga2O3, Bi2O3· 3GeO2, and 2Bi2O3· 3GeO2exhibit local ordered magnetic fields from 30 to 200 G. It thus follows that these compounds are not diamagnets in a conventional sence of the word. With the aim of revealing previously unknown magnetic properties in bismuth(III) oxide-based Main Group element compounds, the mixed bismuth–boron oxides 2Bi2O3· B2O3, 3Bi2O3· 5B2O3, and Bi2O3· 3B2O3were prepared and studied using 209Bi NQR. The quadrupole interactions of the 209Bi nuclei and their electronic environment were studied, the crystallochemical features of the compounds were discussed, and the conformity of the 209Bi results to the X-ray structure data was verified. The preliminary tests in the field of a permanent magnet showed that the resonance intensities increase in external magnetic fields, indicating that a magnetism of unknown nature develops in the titled compounds. It was found reasonable to continue studies of the magnetic properties of these compounds using single-crystal 209Bi NQR in external magnetic fields.  相似文献   

17.
The possibility to synthesize and isolate different types of bismuth polyanions by dissolving various intermetallic precursors (binary samples from A‐Bi or ternary samples from A‐A'‐Bi systems, A and A' = K, Rb, Cs) in ethylenediamine or dimethylform amide in the presence of sequestering agents (2, 2, 2‐crypt or 18‐crown‐6) was investigated. The crystals of (2, 2, 2‐crypt‐K)2Bi4 ( 1 ) and (2, 2, 2‐crypt‐Rb)2Bi4 ( 2 ) compound were obtained from such solutions, the latter for the first time, and their structures were determined. The two compounds are isostructural (P1, Z=1, a = 11.052(2) Å, b = 11.370(2) Å, c = 11.698(2) Å, α = 61.85(3) °, β = 82.58(3) °, γ = 81.87(3) °, R1 = 0.058, wR2 = 0.149 for 1 and a = 11.181(2) Å, b = 11.603(2) Å, c = 11.740(2) Å, α = 61.96(3) °, β = 81.45(3) °, γ = 82.26(3) °, R1 = 0.041, wR2 = 0.109) and contain Bi42— square planar cluster anions and cryptated alkali metal cations. In the case of the presence of 18‐crown‐6 the Laves phases ABi2 (A = K, Rb, Cs) could be isolated from the solutions. A mechanism for the formation of ABi2 is proposed.  相似文献   

18.
Phosphors with an efficient yellow‐emitting color play a crucial role in phosphor‐converted white LEDs (pc‐WLEDs), but popular yellow phosphors such as YAG:Ce or Eu2+‐doped (oxy)nitrides cannot smoothly meet this seemingly simple requirement due to their strong absorptions in the visible range. Herein, we report a novel yellow‐emitting LuVO4:Bi3+ phosphor that can solve this shortcoming. The emission from LuVO4:Bi3+ shows a peak at 576 nm with a quantum efficiency (QE) of up to 68 %, good resistance to thermal quenching (T50 %=573 K), and no severe thermal degradation after heating–cooling cycles upon UV excitation. The yellow emission, as verified by X‐ray photoelectron spectra (XPS), originates from the (3P0,3P1)→1S0 transitions of Bi3+. Increasing the temperature from 10 to 300 K produces a temperature‐dependent energy‐transfer process between VO43? groups and Bi3+, and further heating of the samples to 573 K intensifies the emission. However, it subsequently weakens, accompanied by blueshifts of the emission peaks. This abnormal anti‐thermal quenching can be ascribed to temperature‐dependent energy transfer from VO43? groups to Bi3+, a population redistribution between the excited states of 3P0 and 3P1 upon thermal stimulation, and discharge of electrons trapped in defects with a trap depth of 359 K. Device fabrication with the as‐prepared phosphor LuVO4:Bi3+ has proved that it can act as a good yellow phosphor for pc‐WLEDs.  相似文献   

19.
X-ray photoelectron spectra of valence bands and core levels of BaPb0.8Bi0.2O3, PbO, PbO2, BaPbO3, BaBiO3, NaBiO3, and Bi2O3 were studied. Comparison of the electron binding energies of the Pb 4f7/2 or Bi 4f7/2 core levels for all the oxides studied showed that the high-temperature oxide superconductor BaPb0.8Bi0.2O3 contains simultaneously two different valence forms of lead atoms (PbIV and PbII) and two different valence forms of bismuth atoms (BiV and BiIII). Parameters of the X-ray photoelectron spectra of the valence bands do not contradict the conclusion on heterovalent states of lead and bismuth atoms in BaPb0.8Bi0.2O3.  相似文献   

20.
The influence of Bi2O3 particles size at the sub-micron scale on the thermal excitation threshold and combustion performance of nano-thermite systems was investigated. Three formulas were designed and prepared, Al(100 nm)/Bi2O3(170 nm), Al(100 nm)/Bi2O3(370 nm) and Al(100 nm)/Bi2O3(740 nm). The samples were characterized and tested by SEM, XRD, and DSC techniques. Electrical ignition and combustion experiments were performed. The results showed that with the increase of the particle size of Bi2O3, in the case of slow linear heating, the exothermic heat decreased (1051.2 J g−1, 527.3 J g−1 and 243.6 J g−1) and the thermal excitation threshold temperature increased (564.52 °C, 658.1 °C and 810.9 °C). Simultaneously, the state of the thermite reaction correspondingly changed to solid-solid, liquid-solid and liquid-liquid thermite reaction. In the case of rapid heating , the increase in particle size increased the excitation current (0.561A, 0.710A and 0.837A). During the combustion process, the thermite system with the smallest Bi2O3 particle size showed the largest combustion rate, and that with the largest particle size had the longest combustion duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号