首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
To preorganize PNA for duplex formation, a new cyclic pyrrolidinone PNA analogue has been designed. In this analogue the aminoethylglycine backbone and the methylenecarbonyl linker are connected, introducing two chiral centers compared to PNA. The four stereoisomers of the adenine analogue were synthesized, and the hybridization properties of PNA decamers containing one analogue were measured against complementary DNA, RNA, and PNA strands. The (3S,5R) isomer was shown to have the highest affinity toward RNA, and to recognize RNA and PNA better than DNA. The (3S,5R) isomer was used to prepare a fully modified decamer which bound to rU10 with only a small decrease in Tm (delta Tm/mod = 1 degree C) relative to aminoethylglycine PNA.  相似文献   

2.
The fluorinated olefinic peptide nucleic acid (F-OPA) system was designed as a peptide nucleic acid (PNA) analogue in which the base carrying amide moiety was replaced by an isostructural and isoelectrostatic fluorinated C-C double bond, locking the nucleobases in one of the two possible rotameric forms. By comparison of the base-pairing properties of this analogue with its nonfluorinated analogue OPA and PNA, we aimed at a closer understanding of the role of this amide function in complementary DNA recognition. Here we present the synthesis of the F-OPA monomer building blocks containing the nucleobases A, T, and G according to the MMTr/Acyl protecting group scheme. Key steps are a selective desymmetrization of the double bond in the monomer precursor via lactonization as well as a highly regioselective Mitsunobu reaction for the introduction of the bases. PNA decamers containing single F-OPA mutations and fully modified F-OPA decamers and pentadecamers containing the bases A and T were synthesized by solid-phase peptide chemistry, and their hybridization properties with complementary parallel and antiparallel DNA were assessed by UV melting curves and CD spectroscopic methods. The stability of the duplexes formed by the decamers containing single (Z)-F-OPA modifications with parallel and antiparallel DNA was found to be strongly dependent on their position in the sequence with T(m) values ranging from +2.4 to -8.1 degrees C/modification as compared to PNA. Fully modified F-OPA decamers and pentadecamers were found to form parallel duplexes with complementary DNA with reduced stability compared to PNA or OPA. An asymmetric F-OPA pentadecamer was found to form a stable self-complex (T(m) approximately 65 degrees C) of unknown structure. The generally reduced affinity to DNA may therefore be due to an increased propensity for self-aggregation.  相似文献   

3.
Intact noncovalent complexes were studied in the gas phase using negative ion nano-ESI mass spectrometry. Among various noncovalent systems studied in the gas phase, the interaction of DNA strands with peptide nucleic acids (PNAs) presents a strong interest as biologically relevant systems. PNAs originally described by Nielsen are used as DNA mimics as possible medical agents by imprisoning DNA single strands into stable noncovalent complexes. Two types of PNAs were investigated in the PNA/DNA multiplex: the original Nielsen's PNA and a modified backbone PNA by the introduction of syn- and anti-(aminoethyl)thiazolidine rings. We first investigated the stoichiometry of PNA/DNA multiplexes formed in solution and observed them in the gas phase via qualitative kinetics of complementary strand associations. It resulted in observing PNA2/DNA triplexes (ts) as the multiply deprotonated species, most stable in both the solution and gas phase. Second, charge-dependant decompositions of these species were undertaken under low-energy collision conditions. It appears that covalent bond cleavages (base releasing or skeleton cleavage) occur from lower ts charge states rather than ts unzipping, which takes place from higher charge states. This behavior can be explained by considering the presence of zwitterions depending on the charge state. They result in strong salt-bridge interactions between the positively charged PNA side chain and the negatively charged DNA backbone. We propose a general model to clearly display the involved patterns in the noncovalent triplex decompositions. Third, the relative stability of three PNA2/DNA complexes was scrutinized in the gas phase by acquiring the breakdown curves of their ts(6-) form, corresponding to the ts unzipping. The chemical structures of the studied PNAs were chosen in order to evidence the possible influence of backbone stereochemistry on the rigidity of PNA2/DNA complexes. It provided significantly different stabilities via V(m) measurements. The relative gas-phase stability order obtained was compared to that found in solution by Chassaing et al., and shows qualitative agreement.  相似文献   

4.
Substitution of natural nucleobases in PNA oligomers with ligands is a strategy for directing metal ion incorporation to specific locations within a PNA duplex. In this study, we have synthesized PNA oligomers that contain up to three adjacent bipyridine ligands and examined the interaction with Ni2+ and Cu2+ of these oligomers and of duplexes formed from them. Variable-temperature UV spectroscopy showed that duplexes containing one terminal pair of bipyridine ligands are more stable upon metal binding than their nonmodified counterparts. While binding of one metal ion to duplexes that contain two adjacent bipyridine pairs makes the duplexes more stable, additional metal ions lower the duplex stability, with electrostatic repulsions being, most likely, an important contributor to the destabilization. UV titrations showed that the presence of several bipyridine ligands in close proximity of each other in PNA oligomers exerts a chelate effect. A supramolecular chelate effect occurs when several bipyridines are brought next to each other by hybridization of PNA duplexes. EPR spectroscopy studies indicate that even when two Cu2+ ions coordinate to a PNA duplex in which two bipyridine pairs are next to each other, the two metal-ligand complexes that form in the duplex are far enough from each other that the dipolar coupling is very weak. EXAFS and XANES show that the Ni2+-bipyridine bond lengths are typical for [Ni(bipy)2]2+ and [Ni(bipy)3]2+ complexes.  相似文献   

5.
Substitution of bipyridine for a nucleobase leads to modified peptide nucleic acid (PNA) single strands that are bridged in the presence of Ni2+ into a duplex containing a combination of hydrogen and coordinative bonds. CD experiments demonstrate that the duplex adopts a structure similar to that of an unmodified 10-bp PNA duplex, and UV melting experiments show a very sensitive dependence of the duplex stability on the substitution of a nucleobase pair with a pair of ligands or a metal-ligand alternative base pair.  相似文献   

6.
Two novel pyrrolidinyl peptide nucleic acids comprising alternating sequences of thymine-modified d- or l-proline and an N-amino-N-methylglycine spacer were synthesized using solid-phase methodology. UV and CD titrations together with a gel-binding shift assay revealed that neither of the homothymine PNA decamers bind to their complementary DNA or RNA. This was considered to be due to an unfavorable secondary structure which could not be alleviated by the presence of the positively charged protonated amine in the PNA backbone.  相似文献   

7.
T. Govindaraju 《Tetrahedron》2006,62(10):2321-2330
Synthesis of cationic, chiral PNA analogues with an extra atom in the backbone (bepPNA) is reported. The (2S,4S) geometry of the pyrrolidine ring, and an additional carbon atom in the backbone of homopyrimidine-bepPNAs resulted in the optimization of the inter-nucleobase distance, such that selective binding to complementary RNA over DNA was observed in the triplex mode. It was evident from circular dichroism studies that oligomers with mixed aminoethylglycyl-bep (aeg-bep) repeating units, and also bepPNA with homogeneous backbone attained structures quite different from those of aegPNA2:RNA/DNA complexes. The bepPNA, when incorporated in a duplex forming mixed purine-pyrimidine sequence, also showed a preference for binding complementary RNA over DNA.  相似文献   

8.
A novel efficient synthetic method for a functionalized PNA (peptide nucleic acid) is described, in which a functional molecule is incorporated in place of a nucleobase. Novel ω-AA-BocPNA-OH (20-24, AA=amino acid) were designed as PNA precursor monomer units into which functional molecules could be incorporated efficiently. Compounds 20-24 reacted quantitatively with OSu (N-hydroxysuccinimidyl) active ester derivatives and isothiocyanate derivatives of commercial functional molecules to give target functionalized PNA monomer units 25-53. Various types of functionalized PNA monomer units could be efficiently incorporated into multiple predetermined positions in a PNA oligomer by SPPS (solid phase peptide synthesis) in the same way as for the four A(Cbz), G(Cbz), C(Cbz), and T PNA monomer units.  相似文献   

9.
The X-ray structure of a partly self-complementary peptide nucleic acid (PNA) decamer (H-GTAGATCACT-l-Lys-NH(2)) to 2.60 A resolution is reported. The structure is mainly controlled by the canonical Watson-Crick base pairs formed by the self-complementary stretch of four bases in the middle of the decamer (G(4)A(5)T(6)C(7)). One right- and one left-handed Watson-Crick duplex are formed. The two PNA units C(9)T(10) change helical handedness, so that each PNA strand contains both a right- and a left-handed section. The changed handedness in C(9)T(10) allows formation of Hoogsteen hydrogen bonding between C(9)T(10) and G(4)A(5) of a PNA strand in an adjacent Watson-Crick double helix of the same handedness. Thereby, a PNA-PNA-PNA triplex is formed. The PNA unit A(3) forms a noncanonical base pair with A(8) in a symmetry-related strand of opposite handedness; the base pair is of the A-A reverse Hoogsteen type. The structural diversity of this PNA demonstrates how the PNA backbone is able to adapt to structures governed by the stacking and hydrogen-bonding interactions between the nucleobases. The crystal structure further shows how PNA oligomers containing limited sequence complementarity may form complex hydrogen-bonding networks.  相似文献   

10.
A C-rich PNA hexanucleotide, p(C5T), has been shown to form an i-motif by nanoelectrospray ionization mass spectrometry coupled with H/D exchange, to have thermal stability comparable with its DNA analogue, but to exist over a much narrower pH range.  相似文献   

11.
Backbone modification of peptide nucleic acids (PNAs) by glycosylation has been shown to enhance selective biodistribution and cellular targeting of PNA oligomers based on sugar and cell surface lectin interactions. Here we report the synthesis of a new backbone-glycosylated thymine-based PNA monomer (T(gal)). The sugar residue was attached to the backbone of PNA via a stable carbon-carbon linkage between the sugar and the PNA monomers. Also, incorporation of the modified monomer into a PNA decamer (H-Ala(gal)-G-G-G-T(gal)-C-A-G-C-T(gal)-T-Lys-NH2) was successfully performed. Melting temperature (UV-Tm) of the modified PNA against the complementary DNA was only slightly lower than unmodified PNA.  相似文献   

12.
Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N‐aminoethyl glycine backbone. The crystal structures of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATGCC)2, and the other containing the same nucleobase pairs and a central pair of bipyridine ligands, have been solved with a resolution of 1.22 and 1.10 Å, respectively. The non‐modified PNA duplex adopts a P‐type helical structure similar to that of previously characterized PNAs. The atomic‐level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and the nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. Our results support the notion that whereas PNA typically adopts a P‐type helical structure, its flexibility is relatively high. For example, the base‐pair rise in the bipyridine‐containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines bulge out of the duplex and are aligned parallel to the major groove of the PNA. In addition, two bipyridines from adjacent PNA duplexes form a π‐stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl‐modified DNA duplexes in solution, where the biphenyls are π stacked with adjacent nucleobase pairs and adopt an intrahelical geometry. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes.  相似文献   

13.
Conformationally constrained cis-aminocyclohexylglycyl PNAs have been designed on the basis of stereospecific imposition of 1,2-cis-cyclohexyl moieties on the aminoethyl segment of aminoethylglycyl PNA (aegPNA). The introduction of the cis-cyclohexyl ring may allow the restriction of the torsion angle beta in the ethylenediamine segment to 60-70 degrees that is prevalent in PNA(2):DNA and PNA:RNA complexes. The synthesis of the optically pure monomers (10a and 10b) is achieved by stereoselective enzymatic hydrolysis of an intermediate ester 2. The chiral PNA oligomers were synthesized with (1S,2R/1R,2S)-aminocyclohexylglycyl thymine monomers in the center and N-terminus of aegPNA. Differential gel shift retardation with one or more units of modified monomer units was observed as a result of hybridization of PNA sequences with complementary DNA sequences. Hybridization studies with complementary DNA and RNA sequences using UV-T(m) measurements indicate that PNA with (1S,2R)-cyclohexyl stereochemistry enhances selective binding with RNA over DNA as compared to control aegPNA and PNA with the other (1R,2S) isomer.  相似文献   

14.
Peptide nucleic acid (PNA) is a synthetic analogue of DNA, which has the same nucleobases as DNA but typically has a backbone based on aminoethyl glycine (Aeg). PNA forms duplexes by Watson Crick hybridization. The Aeg-based PNA duplexes adopt a chiral helical structure but do not have a preferred handedness because they do not contain a chiral center. An L-lysine situated at the C-end of one or both strands of a PNA duplex causes the duplex to preferably adopt a left-handed structure. We have introduced into the PNA duplexes both a C-terminal L-lysine and one or two PNA monomers that have a γ-(S)-methyl-aminoethyl glycine backbone, which is known to induce a preference for a right-handed structure. Indeed, we found that in these duplexes the γ-methyl monomer exerts the dominant chiral induction effect causing the duplexes to adopt a right-handed structure. The chiral PNA monomer had a 2,2':6',2'-terpyridine (Tpy) ligand instead of a nucleobase and PNA duplexes that contained one or two Tpys formed [Cu(Tpy)(2)](2+) complexes in the presence of Cu(2+). The CD spectroscopy studies showed that these metal-coordinated duplexes were right-handed due to the chiral induction effect exerted by the S-Tpy PNA monomer(s) except for the cases when the [Cu(Tpy)(2)](2+) complex was formed with Tpy ligands from two different PNA duplexes. In the latter case, the metal complex bridged the two PNA duplexes and the duplexes were left-handed. The results of this study show that the preferred handedness of a ligand-modified PNA can be switched as a consequence of metal coordination to the ligand. This finding could be used as a tool in the design of functional nucleic-acid based nanostructures.  相似文献   

15.
The first peptide nucleic acid (PNA) with a cyclopropane in the backbone has been synthesized, and the effects of the ring on DNA/RNA binding properties of the PNA have been examined. Well-defined triplex to duplex melting transitions of PNA2 DNA complexes is clearly observed by variable temperature UV absorbance with the cyclopropane-constrained PNA.  相似文献   

16.
We report here a preliminary evaluation of a microfabricated disposable-type peptide nucleic acid (PNA) array, with a 20-channel electrode, for the detection of cancer gene c-Ki-ras. Synthetic 15-mer PNA probes complimentary to ras sequence modified with cysteine were immobilized on the gold electrodes on the array. The electrochemical PNA array was reacted with 20-mer oligonucleotide target or 128 bp PCR product for 1 h. The anodic current derived from an electrochemically active DNA binder Hoechst 33258 was measured using the PNA array in the 50 microL of reaction chamber. The anodic current from Hoechst 33258 increased with increasing the concentration of PCR product of ras gene in the range from 10(11) to 10(15) copy mL(-1). The single base mismatch mutations of c-Ki-ras/61 were also detected using the electrochemical PNA array.  相似文献   

17.
The ability of peptide nucleic acids (PNA) to form specific higher-order (i.e., three- and four-stranded) complexes with DNA makes it an ideal structural probe for designing strand-specific dsDNA biosensors. Higher-order complexes are formed between a dye-labeled charge-neutral PNA probe and complementary dsDNA. Addition of a light-harvesting cationic conjugated polymer (CCP) yields supramolecular structures held together by electrostatic forces that incorporate the CCP and the dye-labeled PNA/DNA complexes. Optimization of optical properties allows for excitation of the CCP and subsequent fluorescence resonance energy transfer (FRET) to the PNA-bound dye. In the case of noncomplementary dsDNA, complexation between the probe and target does not occur, and dye emission is weak. The binding between PNA and noncomplementary and complementary dsDNA was examined by several methods. Gel electrophoresis confirms specificity of binding and the formation of higher-order complexes. Nano-electrospray mass spectrometry gives insight into the stoichiometric composition, including PNA/DNA, PNA(2)/DNA, PNA/DNA(2), and PNA(2)/DNA(2) complexes. Finally, structural characteristics and binding-site specificity were examined using ion mobility mass spectrometry in conjunction with molecular dynamics. These results give possible conformations for each of the higher-order complexes formed and show exclusive binding of PNA to the complementary stretch of DNA for all PNA/DNA complexes. Overall, the capability and specificity of binding indicates that the CCP/PNA assay is a feasible detection method for dsDNA and eliminates the need for thermal denaturing steps typically required for DNA hybridization probe assays.  相似文献   

18.
Study of self-assembly of PNA TC8 monitored by UV thermal transition at 295 nm indicates formation of a C-C+ tetraplex (i-motif) in acidic pH, with higher stability than the analogous dTC8.  相似文献   

19.
An immobilization‐free electrochemical method is reported for real‐time monitoring of the DNA hybrid dissociation between a ferrocene labeled peptide nucleic acid (PNA) and a fully‐complementary or single‐base‐mismatched DNA. This method takes advantages of electrostatic charge characteristics and interactions among the neutrally charged PNA, the negatively charged DNA and the negatively charged electrode surface made of indium tin oxide (ITO). When a ferrocene labeled PNA (Fc‐PNA) sequence is hybridized to a complementary DNA strand, electrostatic repulsion between the negatively charged PNA/DNA hybrid and the negative ITO surface retards the diffusion of the electroactive Fc to the electrode, resulting in a much reduced electrochemical signal. On the other hand, when the Fc‐PNA is dissociated from the hybrid at elevated temperatures, the neutrally charged Fc‐PNA easily diffuses to the electrode with an enhanced electrochemical signal. Therefore, an electrochemical melting curve of the Fc‐PNA/DNA hybrid can be obtained by measuring the Fc signal with the increasing temperature. This strategy allows monitoring of the dissociation of the DNA hybrid in real time, which might lead to a simple detection method for single nucleotide polymorphism (SNP) analysis.  相似文献   

20.
Attachment of a vinyl group at guanine position 8 provides fluorescent properties of the nucleobase. Therefore, 8-vinylguanine was introduced as a 2-aminoethylglycine peptide nucleic acid (PNA) building block. Incorporation of the guanine analog in short PNA sequences by Fmoc solid phase peptide synthesis allowed the differentiation between hybridization states of specific double strands with DNA, RNA, and PNA as well as quadruplex forming RNA/PNA oligomers based on fluorescence intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号