首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biological processes have become popular for odor treatment. In this study, a novel fibrous bed bioreactor was applied for treatment of odorous gas. The column reactor was packed with spirally wound fibrous sheet material on which a consortium of microorganisms selected from activated sludge was immobilized. The first stage of this work comprised a preliminary study that aimed at investigating the feasibility of the fibrous bed bioreactor for treatment of odorous volatile fatty acids (VFAs). In this stage, the performance of a fibrous bed bioreactor at increasing mass loadings ranging from 9.7 to 104.2 g/(m3·h) was studied. VFA removal efficiencies above 90% were achieved at mass loadings up to 50.3 g/(m3·h). At a mass loading of 104.2 g/(m3·h), removal efficiency was found to be 87.7%. In the second stage of the work, the process was scaled up with design and operational considerations, namely, packing medium, process condition, and configuration selections. A trickling biofilter with synthetic fibrous packing medium was selected. It was operated under countercurrent flow of gas and liquid streams. The effects of inlet concentration and empty bed retention time on bioreactor performance were studied. The bioreactor was effective in treating odorous VFAs at mass loadings up to 32g/(m3·h), at which VFAs started to accumulate in the recirculation liquid, indicating that the biofilm was unable to degradeall the VFAs introduced. Although VFAs accumulated in the liquid phase, the removal efficency remained above 99%, implying that the biochemical reaction rate, rather than gas-to-liquid mass transfer rate, was the limiting factor of this process. The bioreactor was stable for longterm operation; no clogging and degeneration of the packing medium was observed during the 4-mo operation.  相似文献   

2.
A dense-phase latex rubber tube and a polyporous propylene hollow-fiber membrane module (HFMM) were investigated for control of benzene-contaminated gas streams. The abiotic mass flux observed through the latex tube was 3.9–13 mg/(min·m2) for 150 ppm of benzene at various gas and liquid flow rates, while a 100-fold lower mass flux was observed in the HFMM. After seeding with an aromatic-degrading culture enriched from activated sludge, the observed removal was 80% of 150 ppm, corresponding toa mass flux of 45 mg/(min·m2). The observed mass flux through the HFMM during biofiltration also rose, to 0.4 mg/(min·m2). Because the HFMM had a 50-fold higher surface area than the latex tube, the observed ben zene removal was 99.8%. Compared to conventional biofilters, the two reactors had modest elimination capacities, 2.5–18 g/(m3·h) in the latex tube membrane bioreactor and 4.8–58 g/(m3·h) in the HFMM. Although the HFMM had a higher elimination capacity, the gas-phase pressure drop was much greater.  相似文献   

3.
The performance of a trickle-bed air biofilter (TBAB) in the removal of 1,1,1-trichloroethane (TCLE) was evaluated in concentrations varying from 0.025 to 0.049 g/m3 and at empty-bed residence time (EBRT) varying from 20 to 90 s. Nearly complete TCLE removal could be achieved for influent carbon loading between 0.98 and 5.88 g/m3 h. The TBAB appeared efficient for controlling TCLE emission under low-carbon-loading conditions. Carbon recoveries higher than 95% were achieved, demonstrating the accuracy of results. The carbon mass rate of the liquid effluent was approximately two orders of magnitude less than that of the effluent CO2, indicating that dissolved TCLE and its derivatives in leachate were present in negligible amounts in the TBAB.  相似文献   

4.
In this research the effect of silicone oil as a heavy organic solvent on the performance of a mixed tank bioreactor was investigated. In the first stage of the experiments, the response of a two-liquid-phase mixed tank bioreactor to periods of n-hexane starvation was compared with that of a control bioreactor. In the control bioreactor, after 3?days of starvation, approximately six days were needed to reach the removal efficiency it had before starvation. This figure was only 10?h for the silicone oil-containing bioreactor. The results confirmed that inclusion of a heavy organic solvent can increase the elimination capacity of a bioreactor and to help sustain high elimination capacity after starvation periods. In the second stage of the experiments, the effect of the amount of silicone oil on the performance of the bioreactor was investigated. Increasing the amount of oil from 5 to 10% (v/v) increased the maximum elimination capacity from 106 to 117?g/m3?h.  相似文献   

5.
Multi-phase anaerobic reactor for H2 and CH4 production from paperboard mill wastewater was studied. The reactor was operated at hydraulic retention times (HRTs) of 12, 18, 24, and 36 h, and organic loading rates (OLRs) of 2.2, 1.5, 1.1, and 0.75 kg chemical oxygen demand (COD)/m3 day, respectively. HRT of 12 h and OLR of 2.2 kg COD/m3 day provided maximum hydrogen yield of 42.76?±?14.5 ml/g CODremoved and volumetric substrate uptake rate (?rS) of 16.51?±?4.43 mg COD/L h. This corresponded to the highest soluble COD/total COD (SCOD/TCOD) ratio of 56.25?±?3.3 % and the maximum volatile fatty acid (VFA) yield (YVFA) of 0.21?±?0.03 g VFA/g COD, confirming that H2 was mainly produced through SCOD conversion. The highest methane yield (18.78?±?3.8 ml/g CODremoved) and ?rS of 21.74?±?1.34 mgCOD/L h were achieved at an HRT of 36 h and OLR of 0.75 kg COD/m3 day. The maximum hydrogen production rate (HPR) and methane production rate (MPR) were achieved at carbon to nitrogen (C/N) ratio of 47.9 and 14.3, respectively. This implies the important effect of C/N ratio on the distinction between the dominant microorganism bioactivities responsible for H2 and CH4 production.  相似文献   

6.
This work aimed at setting up a fully instrumented, laboratory-scale bioreactor enabling anaerobic valorization of solid substrates through hydrogen and/or volatile fatty acid (VFA) production using mixed microbial populations (consortia). The substrate used was made of meat-based wastes, especially from slaughterhouses, which are becoming available in large amounts as a consequence of the growing constraints for waste disposal from meat industry. A reconstituted microbial mesophilic consortium without Archaebacteria (methanogens), named PBr, was cultivated in a 5-L anaerobic bioreactor on slaughterhouse wastes. The experiments were carried out with sequential fed-batch operations, including liquid medium removal from the bioreactor and addition of fresh substrate. VFAs and nitrogen were the main metabolites observed, while hydrogen accumulation was very low and no methane production was evidenced. After 1,300 h of culture, yields obtained for VFAs reached 0.38 g/g dry matter. Strain composition of the microbial consortium was also characterized using molecular tools (temporal temperature gradient gel electrophoresis and gene sequencing).  相似文献   

7.
The creation of anoxic granulated biomass has been monitored in a laboratory USB (Upflow Sludge Blanket) reactor with the volume of 3.6 L. The objective of this research was to verify the possibilities of post-denitrification of residual NO3-N concentrations in treated wastewater (denitrification of 10-20 mg L−1 NO3-N) and to determine the maximum hydraulic and mass loading of the granulated biomass reactor. G-phase from biodiesel production and methanol were both tested as external organic denitrification substrates. The ratio of the organic substrate COD to NO3-N was 6. Only methanol was proven as a suitable organic substrate for this kind of reactor. However, the biomass adaptation to the substrate took over a week. The cultivation of anoxic granulated biomass was reached at hydraulic loading of over 0.35 m h−1. The size of granules was smaller when compared with results found and described in literary reports (granules up to 1 mm); however, settling properties were excellent and denitrification was deemed suitable for the USB reactor. Sludge volume indexes of granules ranged from 35-50 mL g−1 and settling rates reached 11 m h−1. Maximum hydraulic and mass loadings in the USB reactor were 0.95 m3 m−2 h−1 and 6.6 kg m−3 d−1. At higher loading levels, a wash-out of the biomass occurred. Presented at the 35th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 26–30 May 2008.  相似文献   

8.
A simple, rapid and sensitive method was developed and validated for the analysis of C2–C5 volatile fatty acids (VFAs) in ambient air. This method involves preconcentration of VFAs with a sodium carbonate-impregnated silica gel tube, ultrasonic extraction with pure water, partition of VFAs to diethyl ether and determination using gas chromatography with a mass selective detector in the selected ion monitoring mode. A water-resistant free fatty acid phase capillary column was used to directly separate C2–C5 VFAs without the time-consuming derivatisation process. The limits of detection ranged from 0.001 to 0.003 µg m?3 and the limits of quantification ranged from 0.003 to 0.010 µg m?3. The validated method was successfully applied to the analysis trace-level VFAs in ambient air and in air samples from a landfill with perceived odour pollution.  相似文献   

9.
Integration of wastewater treatment with algae cultivation is one of the promising ways to achieve an economically viable and environmentally sustainable algal biofuel production on a commercial scale. This study focused on pilot-scale algal biomass production system development, cultivation process optimization, and integration with swine manure wastewater treatment. The areal algal biomass productivity for the cultivation system that we developed ranged from 8.08 to 14.59 and 19.15–23.19 g/m2?×?day, based on ash-free dry weight and total suspended solid (TSS), respectively, which were higher than or comparable with those in literature. The harvested algal biomass had lipid content about 1.77–3.55 %, which was relatively low, but could be converted to bio-oil via fast microwave-assisted pyrolysis system developed in our lab. The lipids in the harvested algal biomass had a significantly higher percentage of total unsaturated fatty acids than those grown in lab conditions, which may be attributed to the observed temperature and light fluctuations. The nutrient removal rate was highly correlated to the biomass productivity. The NH3-N, TN, COD, and PO4-P reduction rates for the north-located photo-bioreactor (PBR-N) in July were 2.65, 3.19, 7.21, and 0.067 g/m2?×?day, respectively, which were higher than those in other studies. The cultivation system had advantages of high mixotrophic growth rate, low operating cost, as well as reduced land footprint due to the stacked-tray bioreactor design used in the study.  相似文献   

10.

Biological sulfate reduction was investigated at the bench and pilot scales in order to determine optimum culture conditions. Efficient strains of sulfate-reducing bacteria (SRB) were selected by classical microbiological methods and by mutagenesis. Improvement factors, including stripping, scale-up, sulfate, and organic substrate concentrations, have been studied in batch bioreactors.

Two types of pilot-scale bioreactors have been adopted, the first being completely mixed with free cells and the second having two stages with immobilized cells on a fixed bed. An overall bioconversion capacity of 11 kg/m3·d of gypsum and 1.2 kg/m3·d of dissolved organic carbon has been achieved in the two-stage bioreactor.

  相似文献   

11.
Biofiltration is a biological process which is considered to be one of the more successful examples of biotechnological applications to environmental engineering, and is most commonly used in the removal of odoriferous compounds. In this study, we have attempted to assess the efficiency with which both single and complex odoriferous compounds could be removed, using one- or two-stage biofiltration systems. The tested single odor gases, limonene, α-pinene, and iso-butyl alcohol, were separately evaluated in the biofilters. Both limonene and α-pinene were removed by 90% or more EC (elimination capacity), 364 g/m3/h and 321 g/m3/h, respectively, at an input concentration of 50 ppm and a retention time of 30 s. The iso-butyl alcohol was maintained with an effective removal yield of more than 90% (EC 375 g/m3/h) at an input concentration of 100 ppm. The complex gas removal scheme was applied with a 200 ppm inlet concentration of ethanol, 70 ppm of acetaldehyde, and 70 ppm of toluene with residence time of 45 s in a one- or two-stage biofiltration system. The removal yield of toluene was determined to be lower than that of the other gases in the one-stage biofilter. Otherwise, the complex gases were sufficiently eliminated by the two-stage biofiltration system.  相似文献   

12.
Anoxic granulation process with four different inocula was monitored in a laboratory post-denitrification up-flow sludge bed (USB) reactor. Wastewater containing 20 mg L−1 NO3-N and methanol as an organic carbon source was used. Gradual increase of mass volumetric loading (B v) and hydraulic loading (γ) resulted in spontaneous granulation of anoxic biomass both from flocculant activated sludge and from anaerobic granulated sludge. With flocculant activated sludge as the inoculum, anoxic granules sedimentation properties and maximum loadings of the USB reactor depended on the sludge volume index (SVI) of the inoculum. B v,max achieved in the USB reactor with flocculant inoculum from a municipal wastewater treatment plant (SVI = 208 mL g−1) was only 4.2 kg of COD per m3 per day and 0.7 kg of NO3-N per m3 per day. B v,max using flocculant inoculum from an industrial wastewater treatment plant (SVI = 170 mL g−1) was 8.1 kg of COD per m3 per day and 1.35 kg of NO3-N per m3 per day. With anaerobic granulated inoculum (SVI range 8–11 mL g−1), markedly higher loadings in the USB reactor and lower SVI values of anoxic granulated biomass were achieved. Values of B v,max were in the range of 16.1–22.4 kg of COD per m3 per day and of 2.7–3.7 kg of NO3-N per m3 per day (depending on the inoculum and the granulation procedure). It was proved that anaerobic granulated sludge is not just an inoculum, it is also a carrier for new denitrification biomass.  相似文献   

13.
The concentration of239,240Pu and238Pu in airborne effluents in the years 1985–1987 from two reactors VVER 440/total power of 880 MW/ of a nuclear power plant V-1 in Jaslovské Bohunice in Czechoslovakia, was determined. The concentration of239,240Pu in effluents ranged from 1.0 to 30.8 Bq.m–3 and of238Pu from 1.6 to 41.1 Bq.m–3. The activity ratio238Pu/239,240Pu in airborne effluents kept within the range of 1.0–2.4. Total annual discharged activities of239,240Pu in 1985, 1986 and 1987 were 28.5, 12.7 and 12.2 kBq, respectively. Total annual discharged activities of238Pu in 1986 and 1987 were 16.6 and 15.1 kBq, respectively.  相似文献   

14.
A novel rotating biological contactor (RBC) bioreactor immobilized with microorganisms was designed to remove volatile organic compounds (VOC), such as benzene and xylene from emissions, and its performance was investigated. Gas-phase VOCs stripped by air injection were 98?% removed in the RBC when the superficial air flow rate was 375?ml/h (1,193 and 1,226?mg/l of benzene and xylene, respectively). The maximum removal rate was observed to be 1,007 and 1,872?mg/m3/day for benzene and xylene, respectively. The concentration profile of benzene and xylene along the RBC was dependent on the air flow rate and the degree of microbial adaptation. Air flow rate and residence time were found to be the most important operational parameters for the RBC reactor. By manipulating these operational parameters, the removal efficiency and capacity of the bioreactor could be enhanced. The kinetic constant K s demonstrated a linear relationship that indicated the maximum removal of benzene and xylene in RBC reactor. The phylogenic profile shows the presence of bacterium like Pseudomonas sp., Bacillus sp., and Enterococcus sp., which belonged to the phylum Firmicutes, and Proteobacteria that were responsible for the 98?% organic removal in the RBC.  相似文献   

15.
Clostridium beijerinckii BA101 (mutant strain) and C. beijerinckii 8052 (wild type) were compared for substrate and butanol inhibition. The wild-type strain is more strongly inhibited by added butanol than is the mutant strain. Acetone and butanol were removed from a fed-batch reactor inoculated with C. beijcrinckii BA101 by pervaporation using a silicone membrane. In the batch reactor, C. beijerinckii BA101 produced 25.3 g/L of total solvents, whereas in the fermentation-recovery experiment it produced 165.1 g/L of total solvents. Solvent productivity increased from 0.35 (batch reactor) to 0.98 g/L·h (fed-batch reactor). The fed-batch reactor wasfed with 500 g/L of glucose-based P2 medium. Acetone selectivities ranged from 2 to 10 whereas butanol selectivities ranged from 7 to 19. Total flux varied from 26 to 31 g/m2·h.  相似文献   

16.
An LC‐MS/MS method for the determination of GDC‐0980 (apitolisib) concentrations in dog plasma has been developed and validated for the first time to support pre‐clinical drug development. Following protein precipitation with acetonitrile, the resulting samples were analyzed using reverse‐phase chromatography on a Metasil AQ column. The mass analysis was performed on a triple quadruple mass spectrometer coupled with an electrospray interface in positive ionization mode. The selected reaction monitoring transitions monitored were m/z 499.3 → 341.1 for GDC‐0980 and m/z 507.3 → 341.1 for IS. The method was validated over the calibration curve range 0.250–250 ng/mL with linear regression and 1/x2 weighting. Relative standard deviation (RSD) ranged from 0.0 to 10.9% and accuracy ranged from 93.4 to 113.6% of nominal. Stable‐labeled internal standard GDC‐0980‐d8 was used to minimize matrix effects. This assay was used for the measurement of GDC‐0980 dog plasma concentrations to determine toxicokinetic parameters after oral administration of GDC‐0980 (0.03, 0.1 and 0.3 mg/kg) to beagle dogs in a GLP toxicology study. Peak concentration ranged from 3.23 to 84.9 ng/mL. GDC‐0980 was rapidly absorbed with a mean time to peak concentration ranging from 1.3 to 2.4 h. Mean area under the concentration–time curve from 0 to 24 hours ranged from 54.4 to 542 ng h/mL. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Hexane is a toxic volatile organic compound that is quite abundant in gas emissions from chemical industries and printing press and painting centers, and it is necessary to treat these airstreams before they discharge into the atmosphere. This article presents a treatment for hexane-contaminated air in steady-state conditions using an internal-loop airlift bioreactor inoculated with a Pseudomonas aeruginosa strain. Bioprocesses were conducted at 20-mL/min, a load of 1.26 g/m3 of C6H14, and a temperature of 28°C. The results of hexane removal efficiencies were presented as a function of the inoculum size (approx 0.07 and 0.2 g/L) and cell reuse. Bioprocess monitoring comprises quantification of the biomass, the surface tension of the medium, and the hexane concentration in the fermentation medium as well as in the inlet and outlet airstreams. The steady-state results suggest that the variation in inoculum size from 0.07 to 0.2 g/L promotes hexane abatement from the influent from 65 to 85%, respectively. Total hydrocarbon removal from the waste gas was achieved during experiments conducted using reused cells at an initial microbial concentration of 0.2 g/L.  相似文献   

18.
SuperLig 644 ion exchange resin is currently being evaluated for cesium (137Cs) removal from radioactive Hanford tank wastes. To assess the performace of the resin in column configuration, a multiple batch contact method was used to determine the equilibrium distribution coefficients (K d) and percent removal for 137Cs from highly alkaline waste solutions obtained from the Hanford Site. The equilibrium loading data were interpreted in terms of Freundlich and Dublin-Radushkevics (D-R) isotherms. The equations fit the experimental data remarkably well considering the complexity of the Hanford tank waste compositions. The mean energy of adsorption and total resin capacity were calculated. The mean free energy for adsorption of cesium from Hanford tanks was ~9 kJ/mol. The total exchange capacity of the SuperLig 644 resin ranged from 0.72 to 3.46 mmole/g resin, depending on the Hanford tank composition. The K d results reveal that SuperLig 644 resin in highly selective for cesium in the presence of relatively high concentrations of sodium and potassium salts.  相似文献   

19.
An innovative pilot-scale phototrophic biofilm reactor was evaluated over a 5-month period to determine its capacity to remove nitrogen and phosphorus from Dutch municipal wastewater effluents. The areal biomass production rate ranged between 2.7 and 4.5 g dry weight/m2/day. The areal nitrogen and phosphorus removal rates averaged 0.13 g N/m2/day and 0.023 g P/m2/day, which are low compared to removal rates achieved in laboratory biofilm reactors. Nutrient removal increased during the day, decreased with decreasing light intensity and no removal occurred during the night. Additional carbon dioxide supply was not requisite as the wastewater was comprised of enough inorganic carbon to sustain microalgal growth. The study was not conclusive for the limiting factor that caused the low nutrient removal rate, possibly the process was limited by light and temperature, in combination with pH increases above pH 9 during the daytime. This pilot-scale study demonstrated that the proposed phototrophic biofilm reactor is not a viable post-treatment of municipal wastewater effluents under Dutch climate conditions. However, the reactor performance may be improved when controlling the pH and the temperatures in the morning. With these adaptations, a phototrophic biofilm reactor could be feasible at lower latitudes with higher irradiance levels.  相似文献   

20.
The sodium cuprous cyanide salt, Na2[Cu(CN)3], has been adsorbed onto alumina, and the i.r. spectra, fast atom bombardment mass spectra and scanning electron micrographs of the reagent over a range of Na2[Cu(CN)3] loadings have been obtained. These show that, at high loadings, Na2[Cu(CN)3] is present on the surface in a crystalline form. At low loadings Na2[Cu(CN)3] is dispersed over the alumina surface, with the i.r. spectrum corresponding to that of aqueous [Cu(CN)3]−2. There appears to be good correlation in the mass spectrum between the percentage intensity of the sodium (m/z 23) peak relative to the sum of the Na+ and Al+ intensities, and the loading of Na2 [Cu(CN)3]. The scanning electron micrographs of the reagent at high loading clearly show crystalline material; at low loadings there is no difference in appearance between the reagent and uncoated alumina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号