首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Electrospray ionization (ESI) mass spectra of 15 anti-estrogenic substances, beta2-agonists and mesocarb were investigated in terms of fragmentation patterns. On the basis of this product ion information, a simultaneous screening method for anti-estrogenic substances, beta2-agonists and mesocarb was developed for doping control purposes. After hydrolysis, liquid-liquid extraction was adopted for the sample preparation. The recoveries for all compounds were 30 and 96%. A single liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis could be performed in 13 min for the analysis of 15 anti-estrogenic substances, beta2-agonists and mesocarb. A quantitative analysis was also validated. Inaccuracies were below +/-12% and precisions varied from 0 to 15.8%. The limit of detection was below 10 ng/mL except formestane (300 ng/mL) and aminoglutethimide (100 ng/mL). The validated method was applied for the analysis of excretion samples.  相似文献   

2.
An analytical method was developed for the determination in urine of 2 metabolites of diazinon: 6-methyl-2-(1-methylethyl)-4(1H)-pyrimidinone (G-27550) and 2-(1-hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone (GS-31144). Two of the urine sample preparation procedures presented rely on gas chromatography/mass selective detection (GC/MSD) in the selected ion monitoring mode for determination of G-27550. For fast sample preparation and a limit of quantitation (LOQ) of 1.0 ppb, urine samples were purified by using ENV+ solid-phase extraction (SPE) columns. For analyte confirmation at an LOQ of 0.50 ppb, classical liquid/liquid partitioning was used before further purification in a silica SPE column. An SPE sample preparation procedure and liquid chromatography/electrospray ionization/mass spectrometry/mass spectrometry (LC/ESI/MS/MS) were used for both G-27550 and GS-31144. The limit of detection was 0.01 ng for G-27550 with GC/MSD, and 0.016 ng when LC/ESI/MS/MS was used for both G-27550 and GS-31144. The LOQ was 0.50 ppb for G-27550 when GC/MSD and the partitioning/SPE sample preparation procedure were used, and 1.0 ppb for the SPE only sample preparation procedure. The LOQ was 1.0 ppb for both analytes when LC/ESI/MS/MS was used.  相似文献   

3.
Beclomethasone dipropionate (BDP) is a potent pro-drug to beclomethasone (BOH) and is used in the treatment of chronic and acute respiratory disorders in the horse. The therapeutic dose of BDP (325 microg per horse) by inhalation results in very low plasma and urinary concentrations of BDP and its metabolites that pose a challenge to detection and confirmation by equine forensic laboratories. To solve this problem, a method involving the use of a liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) was developed for the detection, confirmation and quantification of the analytes in equine samples. Ammonium formate or acetate buffer added to LC mobile phase favored the formation of [M + H](+) ions from BDP and its metabolites, whereas formic acid led to the formation of sodium and potassium adduct ions ([M + Na](+), [M + K](+)) together with [M + H](+) ions. Acetonitrile, on the other hand, favored the formation of abundant solvent adduct ions [M + H + CH(3)CN](+) with the analytes under electrospray ionization (ESI) and atmospheric pressure chemical ionization conditions. In contrast, methanol formed much less solvent adduct ions than acetonitrile. The solvent adduct ions were thermally stable and could not be completely desolvated under the experimental conditions, but they were very fragile to collision-induced dissociation (CID). Interestingly, these solvent adduct ions were observed on a triple-quadrupole mass spectrometry but not on an ion trap instrument where helium used as a damping gas in the ion trap might cause the solvent adduct ions desolvated by collision. By CID studies on the [M + H](+) ions of BDP and its metabolites, their fragmentation paths were proposed. In equine plasma at ambient temperature over 2 h, BDP and B21P were hydrolyzed in part to B17P and BOH, respectively, but B17P was not hydrolyzed. Sodium fluoride added to equine plasma inhibited the hydrolysis of BDP and B21P. The matrix effect in ESI was evaluated in equine plasma and urine samples. The method involved the extraction of BDP and its metabolites from equine plasma and urine samples by methyl tert-butyl ether, resolution on a C(8) column with a mobile phase gradient consisting of methanol and ammonium formate (2 mmol l(-1), pH 3.4) and multiple reaction monitoring for the analytes on a triple-quadrupole mass spectrometer. The detection limit was 13 pg ml(-1) for BDP and B17P, 25 pg ml(-1) for BOH and 50 pg ml(-1) for B21P in plasma and 25 pg ml(-1) for BOH in urine. The method was successfully applied to the analysis of equine plasma and urine samples for the analytes following administration of BDP to horses by inhalation. B17P, the major and active metabolite of BDP, was detected and quantified in equine plasma up to 4 h post-administration by inhalation of a very low therapeutic dose (325 microg per horse) of BDP.  相似文献   

4.
A sensitive and rapid method based on liquid chromatography-triple-quadrupole tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) has been developed and validated for the screening and confirmation of 44 exogenous anabolic steroids (29 parent steroids and 15 metabolites) in human urine. The method involves an enzymatic hydrolysis, liquid-liquid extraction, and detection by LC-MS/MS. A triple-quadrupole mass spectrometer was operated in positive ESI mode with selected reaction monitoring (SRM) mode for the screening and product ion scan mode for the confirmation. The protonated molecular ions were used as precursor ions for the SRM analysis and product ion scan. The intraday and interday precisions of the target analytes at concentrations of the minimum required performance levels for the screening were 2-14% and 2-15%, respectively. The limits of detection for the screening and confirmation method were 0.1-10 ng/mL and 0.2-10 ng/mL, respectively, for 44 steroids. This method was successfully applied to analysis of urine samples from suspected anabolic steroid abusers.  相似文献   

5.
Qualitative screening procedures have been developed for the rapid detection and identification of the hydrolysis products of chemical warfare agents in aqueous samples and extracts, using liquid chromatography-mass spectrometry with positive and negative atmospheric pressure chemical ionisation (APCI). Previously reported screening procedures, which used positive APCI or electrospray ionisation (ESI), were modified by using LC conditions that allowed acquisition of positive and negative ion mass spectra. APCI was generally found to be more robust than ESI, probably due to variable adduct ion formation with ESI, depending on the condition of the sample and the system. Negative APCI provided selective detection of acidic analytes and allowed facile differentiation of alkyl alkylphosphonic acids from isomeric dialkyl alkylphosphonates. The combination of positive and negative APCI, using a C18 column and water-methanol mobile phase modified with ammonium formate, provides a rapid screening procedure for chemical warfare agent degradation products, with limits of detectability in the range 10-100 ng/ml. In the case of proficiency test samples, where analyte concentrations are in the range 1-10 ppm, introduction of the sample by infusion may provide an even faster preliminary screening procedure.  相似文献   

6.
The authors' laboratory at one time employed four liquid chromatography/mass spectrometric (LC/MS) methods for the detection of a large variety of drugs in equine urine. Drug classes covered by these methods included anti-diabetics, anti-ulcers, cyclooxygenase-2 (COX-2) inhibitors, sedatives, corticosteroids, anabolic steroids, sulfur diuretics, xanthines, etc. With the objective to reduce labour and instrumental workload, a new ultra performance liquid chromatography/tandem mass spectrometric (UPLC/MS/MS) method has been developed, which encompasses all target analytes detected by the original four LC/MS methods. The new method has better detection limits than the superseded methods. In addition, it covers new target analytes that could not be adequately detected by the four LC/MS methods. The new method involves solid-phase extraction (SPE) of two aliquots of equine urine using two Abs Elut Nexus cartridges. One aliquot of the urine sample is treated with β-glucuronidase before subjecting to SPE. A second aliquot of the same urine sample is processed directly using another SPE cartridge, so that drugs that are prone to decomposition during enzyme hydrolysis can be preserved. The combined eluate is analysed by UPLC/MS/MS using alternating positive and negative electrospray ionisation in the selected-reaction-monitoring mode. Exceptional chromatographic separation is achieved using an UPLC system equipped with a UPLC(?) BEH C18 column (10 cm L×2.1 mm ID with 1.7 μm particles). With this newly developed UPLC/MS/MS method, the simultaneous detection of 140 drugs at ppb to sub-ppb levels in equine urine can be achieved in less than 13 min inclusive of post-run equilibration. Matrix interference for the selected transitions at the expected retention times is minimised by the excellent UPLC chromatographic separation. The method has been validated for recovery and precision, and is being used regularly in the authors' laboratory as an important component of the array of screening methods for doping control analyses of equine urine samples.  相似文献   

7.
A liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) method was developed using the latest high-resolution LC column technology, the ultra performance liquid chromatography (UPLC), and electrospray ionization (ESI) in the positive ion mode. Gradient UPLC separation conditions were optimized for a group of 22 analytes comprising 17 glucocorticosteroids, specific designer steroids such as tetrahydrogestrinone (THG) and specific beta2-agonists such as formoterol. The UPLC/TOFMS separation obtained required 5.5 min only for all the substances tested. Even the critical pair of dexamethasone and betamethasone isomers was almost completely resolved. Thanks to the over 10,000 full-width at half maximum (FWHM) mass resolution and high mass accuracy features of TOFMS 50 mDa window accurate mass chromatograms could be reconstructed for the individual analytes. Sensitive screening in human and calf urine samples fortified at the glucocorticosteroids minimum required performance limit (MRPL) of 30 microg L(-1) (human urine, sports doping) and 2 microg L(-1) (calf urine, veterinary control) could be obtained. The potential of UPLC/TOFMS for confirmatory analysis was shown by determining the accurate mass of all compounds and fragment ions upon in-source collision-induced dissociation (CID) at different energies. The exact mass measurement errors for all glucocorticosteroids were found to be within 6 ppm. Considering veterinary control, limits of detection (LOD) and limits of quantification (LOQ) were determined for most of the analytes in calf urine and found to range from 0.1 to 3.3 and from 0.4 to 4.4 microg L(-1), respectively. The method can be easily extended with other banned substances of interest, as demonstrated by the addition of 21 beta2-agonists to the original analyte mixture in urine, without causing any interferences.  相似文献   

8.
A method based on the analysis of trimethylsilyl (TMS) derivatives by capillary gas chromatography electrospray ionization mass spectrometry (GC–ESI/MS) was proposed. To improve separation, analytes were derivatized to their TMS derivative. During ESI analysis, TMS derivatives may hydrolyze back to their polar native form and are thus suitable for ESI analysis. Several types of analytes were studied to investigate the potential of the approach. Not all TMS derivatives hydrolyzed back to their native form as anticipated. Incomplete hydrolysis was observed for TMS‐organic acids and TMS‐nonchlorinated phenols. For TMS‐chlorophenols, the observation of only the [M ? H]? ion suggested that these phenols were hydrolyzed back to their native form. For TMS‐beta agonists, the hydrolysis rate was low; therefore, the hydrolysis product was not detected. Both TMS‐chlorophenols and TMS‐beta agonists provide a sensitivity in the range of low parts per billion (0.25–5 ng/ml and 0.5–10 ng/ml respectively). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Recent advances in liquid chromatography/tandem mass spectrometry (LC/MS/MS) technology have provided an opportunity for the development of more specific approaches to achieve the ‘screen’ and ‘confirmation’ goals in a single analytical step. For this purpose, this study adapts the electrospray ionization ion trap LC/MS/MS instrumentation (LC/ESI‐MS/MS) for the screening and confirmation of over 800 drugs and toxic compounds in biological specimens. Liquid‐liquid and solid‐phase extraction protocols were coupled to LC/ESI‐MS/MS using a 1.8‐µm particle size analytical column operated at 50°C. Gradient elution of the analytes was conducted using a solvent system composed of methanol and water containing 0.1% formic acid. Positive‐ion ESI‐MS/MS spectra and retention times for each of the 800 drugs and toxic compounds were first established using 1–10 µg/mL standard solutions. This spectra and retention time information was then transferred to the library and searched by the identification algorithm for the confirmation of compounds found in test specimens – based on retention time matches and scores of fit, reverse fit, and purity resulting from the searching process. The established method was found highly effective when applied to the analyses of postmortem specimens (blood, urine, and hair) and external proficiency test samples provided by the College of American Pathology (CAP). The development of this approach has significantly improved the efficiency of our routine laboratory operation that was based on a two‐step (immunoassay and GC/MS) approach in the past. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A method was developed for screening crops for a range of pesticide residues by liquid chromatography/tandem mass spectrometry (LC/MS/MS). A complete set of LC, electrospray ionization (ESI), and tandem MS acquisition parameters was established for the determination of 108 analytes; these parameters were used for the simultaneous acquisition of 98 analytes in the positive ESI mode and 10 analytes in an additional MS/MS method in the negative ESI mode. The entire procedure involves extraction of residues with methanol-water and partition into dichloromethane. The utility of the method is demonstrated by the analysis of crops of 5 matrix types (water-containing, acidic, dry, sugar-containing, and fatty). Of 108 pesticides/metabolites tested, 104 showed sufficient stability in most matrixes for determination by LC/MS/MS. These analytes belong to 20 chemical classes, which demonstrate the general applicability of the method for multiclass analysis. By using matrix-matched standards, 67 compounds could be determined in most matrixes with recoveries of 70-120% and a relative standard deviation of < or = 25% at the 0.01 mg/kg level.  相似文献   

11.
The potential of liquid chromatography combined with tandem mass spectrometry (LC/MS/MS) for the determination of pesticide metabolites in human urine at the sub-ppb level is explored. Metabolites from two organophosphorous pesticides, 4-nitrophenol (from parathion and parathion-methyl) and 3-methyl-4-nitrophenol (from fenitrothion), are taken as model analytes to conduct this study. After direct injection of the urine sample (10 microL), different approaches were evaluated in order to achieve correct quantitation of analytes using an electrospray ionisation (ESI) interface. Thus, the feasibility of using external calibration was checked versus the use of different isotope-labeled internal standards. The advantages of applying coupled-column liquid chromatography (LC/LC) as an efficient clean-up without any type of sample manipulation are also discussed. The combination of LC/LC with ESI-MS/MS allows the direct analysis of free metabolites in urine, as the automated clean-up performed by the coupled-column technique is sufficient for the removal of interferences that suppress the ionisation of analytes in the ESI source. Using this procedure with external calibration, good precision and recoveries, and detection limits below 1 ng/mL are reached with analysis run times of around 8 min. The hyphenated technique LC/LC/ESI-MS/MS is proved to be a powerful analytical tool, allowing the rapid, sensitive and selective determination of 4-nitrophenol and 3-methyl-4-nitrophenol in human urine without any sample treatment.  相似文献   

12.
A new screening procedure for 18 narcotics in urine for anti-doping purposes has been developed using liquid chromatography/triple quadrupole mass spectrometry (LC/MS). Electrospray ionization (ESI) was used as interface. Infusion experiments were performed for all substances to investigate their mass spectrometric behaviour in terms of selecting product specific ions. These product ions were then used to develop a tandem mass spectrometric method using selected reaction monitoring (SRM). For the LC/MS analysis, chromatography was performed on an octadecylsilane column. The total run time of the chromatographic method was 5.5 min. For the sample preparation prior to LC/MS analysis, the urine samples were liquid-liquid extracted at pH 9.5 after overnight enzymatic hydrolysis. Two extraction solvents were evaluated: dichloromethane/methanol 9/1 (v/v), which is currently used for the extraction of narcotics, and diethyl ether, used for the extraction of steroids. With diethyl ether the detection limits for all compounds ranged between 0.5 and 20 ng/mL and with the mixture containing dichloromethane the detection limits ranged between 0.5 and 10 ng/mL. Taking into account the minimum required performance limits of the World Anti-Doping Agency of 200 ng/mL for narcotics, diethyl ether can also be considered as extraction solvent for narcotics. Finally, the described method was applied to the analysis of urine samples previously found to contain narcotics by our routine gas chromatography/mass spectrometry (GC/MS) method.  相似文献   

13.
A liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method has been developed for the analysis of buprenorphine (BUP) and nor-buprenorphine (NBUP) in biological fluids. Analytes are isolated from urine and blood, after addition of d4-buprenorphine (d4-BUP) as internal standard, by solid-phase extraction. Preparation of hair involves external decontamination, mechanical pulverization, overnight incubation in acidic medium, and neutralization prior to extraction. Enzymatic hydrolysis with beta-glucuronidase may be performed to distinguish between free and total BUP. Chromatographic separation is accomplished by gradient elution on a cyanopropyl 2.1 x 150 mm column. Positive ion ESI and MS analyses are carried out in an ion trap mass spectrometer. The use of this mass analyzer allows effective collisional experiments to be performed on ESI-generated MH+ species. Abundant product ions are produced, which can be monitored together with precursor ions without losing sensitivity. Thus, assay selectivity is definitely increased with respect to LC/ESI-MS/MS methods in which only precursor ions are monitored. The method has good linearity (calibration curves were linear in the range 0.1-10 ng/mL in urine and blood, in the range 10-160 pg/mg in hair) and limits of detection of 0.05 ng/mL for both BUP and NBUP in blood and urine samples, of 4 pg/mg for both analytes in hair. Both intra- and inter-assay precision and accuracy were satisfactory at three concentrations studied: relative standard deviations were <13.7% in urine, <17.3% in blood, <17.8% in hair; percent deviation of the mean from the true value was always <10.5% in urine and blood, <16.1% in hair. The method can be used to determine both analytes in the urine and hair of drug addicts on replacement therapy, and in post-mortem blood specimens when there is suspicion of drug-related death.  相似文献   

14.
This method describes the simultaneous separation, identification, quantification and confirmation of betamethasone (BTM) and dexamethasone (DXM) in equine plasma by liquid chromatography (LC) integrated with multidimensional tandem mass spectrometry. Analytes were directly extracted from equine plasma by methyl tert-butyl ether (MTBE). The residues were reconstituted with sample solvent. LC separation of the analytes was performed on a Hypercarb column using acetonitrile/water/formic acid (95:5:0.5, v/v/v) as the mobile phase. Sample screening, quantification and confirmation were performed in multiple reaction monitoring (MRM) mode. The method was linear over the concentration range of 0.1-75 ng/mL for both analytes. Limit of detection (LOD) was 50 pg/mL and that of quantification (LOQ) was 100 pg/mL for both analytes. The limit of confirmation (LOC) for the presence of BTM or DXM by MRM was 0.5 ng/mL. The intra-and inter-day precisions expressed as coefficient of variation (CV) for quantification of DXM and BTM from 0.1 to 50 ng/mL were less than 7% and the accuracy was in the range of 97-105%. This method is capable of distinguishing BTM from DXM when both analytes are simultaneously present in equine plasma. Measurement uncertainty for both analytes was estimated at less than 16%. The method is rapid, specific, selective, sensitive, simple and reliable. The importance of this method is its usefulness in directly identifying and differentiating BTM from DXM without derivatization.  相似文献   

15.
For the detection of anabolic steroid residues in bovine urine, a highly sensitive liquid chromatographic/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method was developed using both positive and negative ionization. For four compounds the ESI mode was not sensitive enough and gas chromatographic/mass spectrometric GC/MS detection was therefore still necessary as a complementary method. The sample clean-up consisted of solid-phase extraction (SPE) on a C(18) column followed by enzymatic hydrolysis and a second solid-phase extraction on a combination of a C(18) and a NH(2) column. After this last SPE clean-up, the eluate was split into two equal aliquots. One aliquot was further purified and after derivatization used for GC/MS analysis. The other aliquot was analyzed with LC/MS/MS in both ESI+ and ESI- modes. The method was validated according to the European Commission Decision 2002/657/EC. Decision limits (CCalpha) were between 0.16 and 1 ng ml(-1) for the compounds detected with the LC/MS/MS method. The developed method is used in routine analysis in our laboratory.  相似文献   

16.
The purpose of the present work was to evaluate the synergistic effect of ionization type, sample preparation technique, and bio-fluid on the presence of matrix effect in quantitative liquid chromatography (LC)-MS/MS analysis of illicit drugs by post-column infusion experiments with morphine (10-microg/mL solution). Three bio-fluids (urine, oral fluid, and plasma) were pretreated with four sample preparation procedures [direct injection, dilution, protein precipitation, solid-phase extraction (SPE)] and analyzed by both LC-electrospray ionization (ESI)-MS/MS and LC-atmospheric pressure chemical ionization (APCI)-MS/MS. Our results indicated that both ionization types showed matrix effect, but ESI was more susceptible than APCI. Sample preparation could reduce (clean up) or magnify (pre-concentrate) matrix effect. Residual matrix components were specific to each bio-fluid and interfered at different time points in the chromatogram. We evaluated matrix effect in an early stage of method development and combined optimal ionization type and sample preparation technique for each bio-fluid. Simple dilution of urine was sufficient to allow for the analysis of the analytes of interest by LC-APCI-MS/MS. Acetonitrile protein precipitation provided both sample clean up and concentration for oral fluid analysis, while SPE was necessary for extensive clean up of plasma prior to LC-APCI-MS/MS.  相似文献   

17.
Monitoring steroid use requires an understanding of the metabolism in the species in question and development of sensitive methods for screening of the steroid or its metabolites in urine. Qualitative information for confirmation of methandrostenolone and identification of its metabolites was primarily obtained by coupled-column high-performance liquid chromatography-tandem mass spectrometry. The steroids and a sulphuric acid conjugate were isolated and identified by their daughter ion mass spectra in the urine of both man and the horse following administration of methandrostenolone. Spontaneous hydrolysis of methandrostenolone sulphate gave 17-epimethandrostenolone and several dehydration products. This reaction had a half-life of 16 min in equine urine at 27 degrees C. Mono- and dihydroxylated metabolites were also identified. Several screening methods were evaluated for detection and confirmation of methandrostenolone use including thin-layer chromatography and high-performance liquid chromatography. Coupled-column liquid chromatography was used for automated clean-up of analytes difficult to isolate by manual methods. The recovery of methandrostenolone was 101 +/- 3.3% (mean +/- S.D.) at 6.5 ng/ml and both methandrostenolone and 17-epimethandrostenolone were quantified in urine by ultraviolet detection up to six days after a 250-mg intramuscular dose to a horse. The utility of on-line tandem mass spectrometry for confirmation of suspected metabolites is also shown.  相似文献   

18.
A method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the direct quantification of glucuronides of testosterone (TG), epitestosterone (EPG), androsterone (AG) and etiocholanolone (ETG) has been developed. The method allowed for the direct determination of these analytes avoiding hydrolysis and derivatization, which are usual steps in commonly used methods based on gas chromatography-mass spectrometry (GC-MS). The electrospray ionization and the product ion spectra of the glucuronides have been studied in order to obtain the most specific transitions. The use of the selected transitions is necessary for the determination of the analytes at low ng/ml concentration levels. Two different approaches have been tested for sample preparation: direct injection after filtration and acidic liquid-liquid extraction (LLE) with ethyl acetate. Both approaches have been validated obtaining satisfactory values for accuracy and precision with limits of detection lower than 1 ng/ml for TG and EPG. Ion suppression was more pronounced after LLE probably due to the concentration of interferences from acidic urine. The applicability of the method has been checked by the analysis of 40 urine samples. The results were compared with those obtained with the common GC-MS method. Results have shown a good correlation between both methods with correlation coefficients higher than 0.97. A slope close to 1 was obtained for all analytes except for AG possibly due to losses during the extraction process prior to GC-MS.  相似文献   

19.
A selective and sensitive method for screening 31 analytes (nine corticosteroids, eight β‐agonists, seven anabolic steroids, six promazines and zeranol) in bovine urine was validated according to 2002/657/EC guidelines. Upon optimization of sample treatment conditions, the extraction was performed by diethylether at pH 9, after deconjugation. Extraction yields (R%) proved higher than 70% for 19 analytes, 50<R%<70 for 5 analytes, lower than 50% but reproducible for the remaining six analytes. The analyses were carried out using HPLC‐ESI‐MS/MS. The method sensitivity proved high enough to largely exceed the CCβ requirements of the Italian residue detection plan, ranging from 1 to 3 ng/mL (20 ng/mL for promazines). The present method allowed the simultaneous analysis of most drugs for which the European legislation prescribes official controls. Its practical applicability was verified on 494 real samples as an alternative to the traditional screening protocols based on multiple immunometric analysis, demonstrating high efficiency and comprehensive investigation capacity, allowing epidemiological assessment of the current trends in cattle breeding drug abuse. Among non‐compliant results, nine borderline cases of growth‐promoters illegal treatments, making use of long‐term low‐dosage administrations and typically yielding urine residues below the cut‐off value for immunochemical methods, were detected by using the present LC‐MS/MS method.  相似文献   

20.
Tang FP  Leung GN  Wan TS 《Electrophoresis》2001,22(11):2201-2209
A capillary electrophoresis-mass spectrometry (CE-MS) method for the analysis of quaternary ammonium drugs in equine urine was developed. Quaternary ammonium drugs were first extracted from equine urine by ion-pair extraction and then analysed by CE-MS in the positive electrospray ionization (ESI) mode. Within 12 min, eight quaternary ammonium drugs, each at 1 ng/mL in horse urine, could be detected. The confirmation of these drugs in urine samples was achieved by capillary electrophoresis tandem mass spectrometry (CE-MS/MS). A direct comparison of this method was made with existing liquid chromatography/mass spectrometry (LC-MS) methods in the detection and confirmation of glycopyrrolate and ipratropium bromide in horse urine. While the two drugs could be detected within the same CE-MS run at 1 ng/mL in urine, they could only be detected in separate LC-MS runs at 5 ng/mL in urine. In addition, CE-MS consumed a much smaller volume of extract; the analyte peak widths, in some cases, were much narrower; and as the quaternary ammonium ions were well separated electrophoretically from the mainly neutral urine matrix, a much cleaner background in the CE-MS total ion trace was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号