首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New Complexes of the Lanthanoides with Bidentate Ligands. The Crystal Structures of [(C17H17N2)GdBr2(thf)2] and [(C17H17N2)3Ln] (L = Sm, Gd) Reaction of [(AIP)Li] with GdBr3 leads to a new mononuclear complex [(AIP)GdBr2(thf)2] 1 . In contrast to this with SmI2 the compound [(AIP)3Sm] 2 is build up. Such complexes are also formed with Gd(OR*)3 (R* = OtBu2C6H3) and [(AIP)Li] in a 1:3 ratio, [(AIP)3Gd] 3 . The structures of 1–3 were characterized by X-ray single crystal structure analysis ( 1 : space group Pna21 (No. 33), Z = 4, a = 1 972.7(9) pm, b = 984.7(5) pm, c = 1 425.0(8) pm, α = β = γ = 90°; 2 · 2 THF: space group C2/c (No. 15), Z = 8, a = 3 644.4(9) pm, b = 1 437.5(5) pm, c = 2 334.4(7) pm, β = 1 21.07(6)°; 3 : space group P2(1)/c (No. 14), Z = 4, a = 1 872.9(1) pm, b = 1 064.6(1) pm, c = 2 282.4(2) pm, β = 103.75(8)°).  相似文献   

2.
Reactions of Lanthanide Halides with Alkalibenzyl Compounds. Synthesis and Crystal Structures of [(tmeda)(C6H5CH2)2Y(μ-Br)2Li(tmeda)], [(tmeda)2SmBr(μ-Br)2Li(tmeda)] and [(dme)2SmBr(μ-Br)]2 Alkali-benzyl compounds react via a metathesis reaction with lanthanide halides to benzyl complexes of the rare earths. Reaction of [(C6H5CH2)Li(tmeda)] with YBr3 leads to the complex [(tmeda)Y(C6H5CH2)2 (μ-Br)2Li(tmeda)] 1 , in which Yttrium and lithium are linked via two bromide bridges. However, the reaction of [(C6H5CH2)Li(tmeda)] with SmBr3 in toluene/tmeda leads under reduction of the Sm ion to the compound [(tmeda)2SmBr(μ-Br)2Li(tmeda)] 2 . 2 reacts with DME to yield the dimeric compound [(dme)2SmBr(μ-Br)]2 3 . The structures of 1 – 3 were determined by X-ray single crystal structure analysis:
  • 1: Space group P21/c, Z = 4, a = 829.5(6) pm, b = 1477.9(11) pm, c = 2575.0(10) pm, β = 92.03(6)°,
  • 2: Space group P21, Z = 2, a = 954,7(3) pm, b = 1338.5(6) pm, c = 1244.9(5) pm, β = 107.51(3)°,
  • 3: Space group P1 , Z = 1, a = 797.2(7) pm, b = 818.3(7) pm, c = 1169.7(8) pm, α = 100.96(6)°, β = 92.03(6)°, γ = 91.75(7)°.
  相似文献   

3.
Phosphorane Iminato Complexes of Niobium and Tantalum. Crystal Structures of [NbCl4(NPiPr3)(CH3CN)], [NbCl3(NPiPr3)2], [TaCl4(NPiPr3)]2, and [TaCl3(NPiPr3)2] The title compounds have been prepared from the pentachlorides of niobium and tantalum with the silylated phosphorane imine Me3SiNPiPr3. They are characterized by IR spectroscopy and crystal structure determinations. NbCl4(NPiPr3)(CH3CN)] . Space group Pna21, Z = 4, 2102 observed unique reflections, R = 0.022. Lattice dimensions at ?50°C: a = 1627.2, b = 876.3, c = 1335.3 pm. The compound forms monomeric molecules with the acetonitrile molecule in trans position to the phosphorane iminato group. This group shows a short NbN distance of 178.2 pm with a NbNP bond angle of 165.2°. [NbCl3(NPiPr3)2] . Space group Cc, Z = 4, 2534 observed unique reflections, R = 0.046. Lattice dimensions at 20°C: a = 1302.65, b = 1321.69, c = 1672.04 pm, β = 111.713°. The compound forms monomeric molecules with a distorted bipyramidal surrounding of the niobium atom and equatorially arranged phosphorane iminato groups. [TaCl4(NPiPr3)]2 . Space group Pbca, Z = 4, 1537 observed unique reflections, R = 0.037. Lattice dimensions at ?40°C: a = 1420.6, b = 1483.9, c = 1622.0 pm. The compound forms centrosymmetric dimeric molecules with dissimilarly long Ta2Cl2 bridges and equatorially arranged phosphorane iminato groups. [TaCl3(NPiPr3)2] . Space group Cc, Z = 4, 5737 observed unique reflections, R = 0.039. Lattice dimensions at ?50°C: a = 1303.9, b = 1327.2, c = 1682.1 pm, β = 111,92°. The compound is isotypical with the corresponding niobium compound.  相似文献   

4.
New Benzyl Complexes of the Lanthanides. Synthesis and Crystal Structures of [(C5Me5)2Y(CH2C6H5)(thf)], [(C5Me5)2Sm(CH2C6H5)2K(thf)2], and [(C5Me5)Gd(CH2C6H5)2(thf)] YBr3 reacts with potassium benzyl and [K(C5Me5)] in THF to give KBr and the monobenzyl compound [(C5Me5)2 · Y(CH2C6H5)(thf)] 1 . The analogous reaction with SmBr3 in THF leads to the polymeric product [(C5Me5)2Sm(CH2C6H5)2 ∞ K(thf)2] 2 , with GdBr3 to [(C5Me5)Gd(CH2C6H5)2(thf)] 3 . The structures of 1–3 were determined by X-ray single crystal structure analysis:
  • Space group P1 , Z = 2, a = 851.2(4) pm, b = 952.7(4) pm, c = 1858.6(8) pm, α = 79.90(4)°, β = 77.35(4)°, γ = 73.30(3)°.
  • Space group P1 , Z = 2, a = 903.3(2) pm, b = 1375.9(3) pm, c = 1801.1(4) pm, α = 100.92(3)°, β = 100.77°, γ = 98.25(3)°.
  • Space group P21/n, Z = 8, a = 1458.2(5) pm, b = 927.8(3) pm, c = 3792.9(15) pm, β = 96.83(3)°.
  相似文献   

5.
Fluoroplatinates(IV) of the Lanthanides LnF[PtF6] (Ln = Pr, Sm, Gd, Tb, Dy, Ho, Er) For the first time fluorides LnF[PtF6] (Ln = Pr, Sm, Gd, Tb, Dy, Ho, Er), all yellow have been obtained. From single crystal data they crystallize monoclinic, space group P21/n?C (No. 14), Z = 4, Pr: a = 1 125.77(19) pm, b = 559.04(7) pm, c = 910.27(17) pm, β = 107.29(1)°; Sm: a = 1 114.63(31) pm, b = 552.70(12) pm, c = 898.02(20) pm, β = 107.24(2)°; Gd: a = 1 112.12(15) pm, b = 551.22(7) pm, c = 891.99(11) pm, β = 107.09(1)°; Tb (Powder data): a = 1 108.88(20) pm, b = 552.71(9) pm, c = 889.56(16) pm, β = 107.30(1)°; Dy: a = 1 100.28(23) pm, b = 547.77(8) pm, c = 882.41(13) pm, β = 107.32(1); Ho: a = 1 099.11(16) pm, b = 546.16(7) pm, c = 879.45(15) pm, β = 107.34(1)°; Er: a = 1 095.10(16) pm, b = 544.82(10) pm, c = 874.85(14) pm, β = 107.37(1)°.  相似文献   

6.
Thioureato Brigded Binuclear Complexes of the Lanthanides Synthesis and Crystal Structure of [{PhC(NPh)NC(S)NEt2}{Et2NC(S)NH}LnBr(thf)]2 (Ln = Gd, Sm) The reaction of potassium-N-(diethylaminothiocarbonyl)-N′-phenyl-benzamidinat with LnBr3 (Ln = Gd, Sm) leads to the formation of the binuclear complexes [{PhC(NPh)NC(S)NEt2}{Et2NC(S)N}LnBr(thf)]2} (Ln = Gd 1 , Sm 2 ). The two bridging thiureatoligands are probably built during the reaction of potassium with the starting ligand. Coordination by one N-(diethylaminothiocarbonyl)-N′-phenylbenzamidinato-ligand, one Br-ion and one THF-ligand leads to square antiprismatic coordination of the lanthanoids. The structures of both compounds were characterized by X-ray analysis ( 1 : P1 (Nr.2), Z = 1, a = 12,006(4) Å, b = 12,245(4) Å, c = 13,612(3) Å, α = 70,55(3)°, β = 68,21(3)°, γ = 81,31(3)° 2 : P1 (Nr.2), Z = 1, a = 11,803(3) Å, b = 12,344(5) Å, c = 12,797(8) Å, α = 103,07(5)°, β = 101,76(3)°, γ = 114,13(3)°)  相似文献   

7.
Synthesis and Crystal Structures of Lanthanide Bromide Thiosilicates Ln3Br[SiS4]2 (Ln = La, Ce, Pr, Nd, Sm, Gd) Single crystals of the bromide—thiosilicates Ln3Br[SiS4]2 were prepared by reaction of lanthanide metal (Ln = La, Ce, Pr, Nd, Sm, Gd), sulfur, silicon and bromine in quartz glass tubes. The thiosilicates crystallize in the monoclinic spacegroup C2/c (Z = 4) isotypically to the iodide analogues Ln3I(SiS4)2 and the A—type chloride—oxosilicates Ln3Cl[SiO4]2 with the following lattice constants: La3Br[SiS4]2: a = 1583.3(4) pm, b = 783.0(1) pm, c = 1098.2(3) pm, β = 97.33(3)° Ce3Br[SiS4]2: a = 1570.4(3) pm, b = 776.5(2) pm, c = 1092.2(2) pm, β = 97.28(2)° Pr3Br[SiS4]2: a = 1562.6(3) pm, b = 770.1(2) pm, c = 1088.9(2) pm, β = 97.50(2)° Nd3Br[SiS4]2: a = 1561.4(4) pm, b = 766.0(1) pm, c = 1085.3(2) pm, β = 97.66(3)° Sm3Br[SiS4]2: a = 1555.4(3) pm, b = 758.5(2) pm, c = 1079.9(2) pm, β = 98.28(2)° Gd3Br[SiS4]2: a = 1556.5(3) pm, b = 750.8(1) pm, c = 1074.5(2) pm, β = 99.26(2)° In the crystal structures the bromide ions form chains along [001] with trigonal planar coordination by lanthanide cations, while the [SiS4]4‐—building units display isolated distorted tetrahedra.  相似文献   

8.
On the Reaction of the Lanthanides with Chelate Ligands Synthesis and Crystal Structure of [(py2CH)3Gd] GdBr3 reacts with [(py2CH)Li] to the mononuclear complex [(py2CH)3Gd] 1 . The structure of 1 was characterized by X-ray single crystal structure analysis. Space group P21, Z = 2, a = 951.4(10) pm, b = 1369.4(10) pm, c = 1074.5(10) pm, β = 105.69(8)°. The Gd-Ion is surrounded by the six nitrogen atoms of the three chelate ligands and shows a distorted trigonal prismatic coordination. As a difference to the lithium salt of the ligand, the six-membered metalla-cycles in 1 are not planar, but show a boat conformation.  相似文献   

9.
Tetrafluoroaurates(III) of Lanthanoides M2F[AuF4]5 (M = Tb, Dy, Ho, Er) Tetrafluoroaurates(III) M2F[AuF4]5 with M = Tb, Dy, Ho, Er, all yellow, have been obtained. From single crystal data they crystallize triclinic, space group P1 -C1i (No. 2) with Tb: a = 1 194,34(7) pm, b = 798,46(6) pm, c = 902,02(7) pm, α = 89,033(7)°, β = 88,990(6)°, γ = 89,006(7)°; Dy: a = 1 191,66(9) pm, b = 796,33(8) pm, c = 899,65(9) pm, α = 88,956(8)°, β = 89,056(8)°, γ = 88,972(8)°; Ho: a = 1 189,06(10) pm, b = 795,46(6) pm, c = 896,81(7) pm, α = 88,912(8)°, β = 89,101(7)°, γ = 88,873(8)°; Er: a = 1 185,20(40), b = 793,98(14), c = 893,83(20), α = 88,751(23)°, β = 89,187(26)°, γ = 88,884(9)°  相似文献   

10.
Synthesis and Crystal Structures of the Samarium Complexes [SmI2(DME)3] and [Sm2I(NPPh3)5(DME)] When treated with ultrasound, the reaction of samarium metal with N-iodine-triphenylphosphaneimine in 1,2-dimethoxyethane (DME) leads to the two samarium complexes [SmI2(DME)3] ( 1 ) and [Sm2I(NPPh3)5(DME)] ( 2 ), which are separated from each other by fractional crystallization. 1 could be isolated in two different crystallographic forms, namely as brownish black crystals ( 1 a ) and as violet-black crystals ( 1 b ), both of them are characterized by crystal structure analyses. 1 a : Space group P21/c, Z = 4, lattice dimensions at –80 °C: a = 1459.4(1), b = 1314.4(1), c = 2293.6(2) pm, β = 99.245(8)°, R = 0.0344. The structure of 1 a holds two crystallographically independent molecules [SmI2(DME)3], in which the samarium atoms have coordination number eight. The two individuals differ from each other particularly in their I–Sm–I bond angles, which are 157.94 and 178.45°. 1 b : Space group P21, Z = 2, lattice dimensions at –80 °C: a = 849.4(3), b = 1060.1(3), c = 1235.1(6) pm, b = 93.86(5)°, R = 0.0251. 1 b has a molecular structure similar to that of 1a with a bond angle I–Sm–I of 158.40°. The phosphoraneiminato complex [Sm2I(NPPh3)5(DME)] ( 2 ) forms colourless, moisture sensitive crystals which contain two molecules DME per formula unit. 2 · 2 DME: Space group P1, Z = 2, lattice dimensions at –80 °C: a = 1405.0(4), b = 1656.5(3), c = 2208.3(7) pm, α = 89.60(3)°, β = 72.96(4)°, γ = 78.70(3)°, R = 0.0408. In 2 the two samarium atoms are linked via the μ-N atoms of two phosphoraneiminato ligands to form a planar Sm2N2 four-membered ring. One of the Sm atoms is terminally coordinated by the N atoms of two (NPPh3) groups, thus achieving a distorted tetrahedral surrounding. The second Sm atom is coordinated by the N atom of one (NPPh3) group, by the terminally bonded iodine atom, and by the O atoms of the DME chelate, thus achieving a distorted octahedral surrounding.  相似文献   

11.
The trichlorides of yttrium, samarium, and lutetium react with 2 equivalents of Na[C5H4 tBu] and 1 equivalent of NaBH4 to give [(η5-C5H4 tBu)2LnBH4(THF)] (Ln = Y ( 1 ), Sm ( 2 ), Lu ( 3 )) or with 2 equivalents of Na[C5Me4R] and 1 equivalent of NaBH4 to form [(η5-C5Me4R)2 · LnBH4(THF)] (R = H, Ln = Y ( 4 ), Sm ( 5 ), Lu ( 6 ); R = Me, Ln = Y ( 7 ), Sm ( 8 ), Lu ( 9 ); R = Et, Ln = Y ( 10 ), Sm ( 11 ), Lu ( 12 ); R = iPr, Ln = Y ( 13 ), Sm ( 14 ), Lu ( 15 )). The new compounds have been characterized by elemental analysis, NMR spectroscopy and mass spectrometry. The crystal structures of 8 and 10 were determined by single crystal X-ray diffraction.  相似文献   

12.
Hexaisopropoxoniobates/tantalates of lathanides of the type [Ln{(μ‐OPri)2M(OPri)4}3] (M = Nb, Ln = Y( 1 ), La( 2 ), Nd( 3 ), Er( 4 ), Lu( 5 ); M = Ta, Ln = Y( 6 ), Gd( 7 )) have been prepared by the reactions of LnCl3.3PriOH with three equivalents of KM(OPri)6 in benzene. Reactions in 1:2 molar ratio of LnCl3.3PriOH with KTa(OPri)6 yielded derivatives of the type [{(PriO)3Ta(μ‐OPri)3}Ln{(μ‐OPri)2Ta(OPri)4}(Cl)] (Ln = Y( 8 ), Gd( 9 )), which on interactions with one equivalent of KOPri afforded [{(PriO)3Ta(μ‐OPri)3}Ln {(μ‐OPri)2Ta(OPri)4}(OPri)] (Ln = Y( 10 ), Gd( 11 )). All these derivatives have been characterized by elemental analyses and molecular weight measurements as well as by their spectroscopic [IR, 1H and 13C NMR (Y, La, Lu), electronic (Nd, Er)] studies. 89Y NMR studies have also been carried out on derivatives ( 6 ), ( 8 ), and ( 10 ).  相似文献   

13.
Some new Schiff bases derivates from 2-furaldehyde and phenylenediamines (L1-3) and their complexes with lanthanum (La), samarium (Sm), gadolinium (Gd) and erbium (Er) have been synthesized. These complexes with general formula [Ln(L1-3)2(NO3)2]NO3·nH2O (Ln = La, Sm, Gd, Er) were characterized by elemental analysis, UV-Vis, FT-IR and fluorescence spectroscopy, molar conductivity and thermal analysis. The metallic ions were found to be eight coordinated. The emission spectra of these complexes indicate the typical luminescence characteristics of the Sm(III), La(III), Er(III) and Gd(III) ions.  相似文献   

14.
Organometallic Compounds of the Lanthanoids. 111. Synthesis and Characterization of Cationic Metallocene Complexes of the Lanthanoides. X-Ray Crystal Structure of [Cp Yb(THF)2][BPh4] Cationic organolanthanoide compounds [(C5H4R)2Sm(THF)2][BPh4] (R = tBu ( 1 ), SiMe3 ( 2 )), [PyrSm(THF)][BPh4] ( 3 ) (Pyr* = NC4H2tBu2-2,5), [CpLn(THF)2][BPh4] (Cp* = C5Me5; Ln = Y ( 4 ), Yb ( 5 )), and [(C5Me4Et)2 Ln(THF)2][BPh4] (Ln = Y ( 6 ), Sm ( 7 )) have been synthesized by oxidation of the divalent metallocenes [(C5H4R)2Sm(THF)2] (R = tBu, SiMe3), [PyrSm(THF)], [CpYb(THF), and [(C5Me4Et)2Sm(THF)] with Ag[BPh4] and by protolysis of the lanthanoide alkyls [CpYMe(THF)], [CpYbCH(SiMe3)2], and [(C5Me4Et)2LnCH(SiMe3)2] (Ln = Y, Sm) by [NEt3H][BPh4]. The 1H- and 13C-NMR spectra of the new compounds are discussed. 5 crystallizes in the space group P21/c with a = 10.604(7), b = 21.749(3), c = 19.124(4) Å, β = 96.47(4)°, Z = 4 and V = 4383(3) Å3 (R = 0.0291 for 8517 observed reflections with Fo ≥ 4σ (Fo).  相似文献   

15.
Synthesis and Structure of the Platinum(0) Compounds [(dipb)Pt]2(COD) and (dipb)3Pt2 and of the Cluster Hg6[Pt(dipb)]4 (dipb = (i-Pr)2P(CH2)4P(i-Pr)2) The reduction of (dipb)PtCl2 with Na/Hg yields (dipb)Pt as an intermediate which reacts with the amalgam to form the cluster Hg6[Pt(dipb)]4 ( 3 ) or decomposes to (dipb)3Pt2 ( 2 ) and Pt. In the presence of COD [(dipb)Pt]2(COD) ( 1 ) is obtained. 1 crystallizes monoclinicly in the space group P21/c with a = 1596.1(4), b = 996.5(2), c = 1550.4(3) pm, β = 113.65(2)°, Z = 2. In the dinuclear complex two (dipb)Pt units are bridged by a 1,2-η2-5,6-η2 bonded COD ligand. Whereby the C = C double bonds are lengthened to 145 pm. 2 forms triclinic crystals with the space group P1 and a = 1002.0(2), b = 1635.9(3), c = 868.2(2) pm, α = 94.70(2)°, β = 94.45(2)°, σ = 87.95(1)°, Z = 1. In 2 two (dipb)Pt moieties are connected by a μ-dipb ligand in a centrosymmetrical arrangement. 3 is monoclinic with the space group C2/c and a = 1273.8(3), b = 4869.2(6), c = 1660.2(3) pm, β = 95.16(2)°, Z = 4. The clusters Hg6[Pt(dipb)]4 have the symmetry C2. Central unit is a Hg6 octahedron of which four faces are occupied by Pt(dipb) groups. The bonding in the cluster is discussed on the basis of eight Pt? Hg two center bonds of 267.6 pm and two Pt? Hg? Pt three center bonds with Pt? Hg = 288.0 pm.  相似文献   

16.
Diacetone Alcohol Complexes of Lanthanide Trichlorides. Crystal Structures of [LnCl3(DAA)2] with Ln = Sm and Eu The diacetone alcohol complexes [LnCl3(DAA)2] with Ln = samarium ( 1 ) and europium ( 2 ) are obtained from the waterfree metal trichlorides with excess diacetone alcohol (4‐hydroxy‐4‐methyl‐2‐pentanone = DAA) forming colourless ( 1 ) and pale yellow crystals ( 2 ), respectively, which are characterized by crystal structure determinations. The europium compound 2 is additionally described by its vibrational spectra (IR, Raman). 1 and 2 crystallize isotypically with one another. The metal atoms of the molecular complex units are unusually coordinated in a distorted pentagonal‐bipyramdial fashion by the three chlorine atoms and by the two alcoholic oxygen atoms of the DAA molecules in the equatorial plane. The apical positions are occupied by the carbonyl oxygen atoms of the chelating DAA molecules. The complex units [LnCl3(DAA)2] are associated along [100] by bifurcated —OH···Cl···HO— bridges to form chains. 1 : Space group P21, Z = 2, lattice dimensions at —80 °C: : a = 710.2(1), b = 1617.6(2), c = 827.3(1) pm; β = 106.36(1)°; R1 = 0.026. 2 : Space group P21, Z = 2, lattice dimensions at —80 °C: a = 709.7(1), b = 1614.5(2), c = 825.7(1) pm; β = 106.40(1)°; R1 = 0.0303.  相似文献   

17.
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [SbF2(NPEt3)]2 and [SbF(NPEt3)2]2 as well as of NMe4+SbF4? The title compounds have been prepared from antimony trifluoride with the silylated phosphaneimine Me3SiNPEt3 and [NMe4]F, respectively. They were characterized by IR spectroscopy and by crystal structure determinations. [SbF2(NPEt3)]2 : Space group Pbca, Z = 8, structure determination with 1264 unique reflections, R1 = 0.028 for reflections with I > 2σ(I). Lattice dimensions at ?80°C: a = 1284.8, b = 1162.4, c = 1380.4 pm. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of the NPEt3? ligands. [SbF(NPEt3)2]2 : Space group P21/c, Z = 4, structure determination with 2270 unique reflections, R1 = 0.029 for reflections with I > 2μ(I). Lattice dimensions at ?75°C: a = 815.8, b = 1121.2, c = 2068.5 pm, β = 101.09°. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of one of the two NPEt3? ligands. The other NPEt3? group is terminally connected. NMe4+SbF4? : Space group P21/c, Z = 4, structure determination with 1503 unique reflections, R1 = 0.069 for reflections with I > 2μ(I). Lattice dimensions at ?50°C: a = 539.80, b = 896.10, c = 1760.3 pm, β = 90.338°. The compound includes monomeric SbF4? ions with distorted Ψ-trigonal-bipyramidal environment of the antimony atoms.  相似文献   

18.
Isothiocyanate Complexes of Copper(II) with Square-Planar and Tetragonal-Pyramidal Coordination: Structure, Phase Transitions, and Redox-Properties In dependence on the kind and size of the counter-cations Cu2+-ions form isothiocyanate complexes with different coordination number and geometry. The structures of compounds with square-planar coordination [(NEt4)2[Cu(NCS)4] · CHCl3 (brown): Space group 14/mmm, Z = 2; a = 1204.3(2) pm, c = 1154.2(3) pm] and with tetragonal-pyramidal polyhedra [(NEt4)3[Cu(NCS)5] · SM (green, SM: unidentified solvent molecule): Space group P21/c, Z = 4; a = 1154.2(6) pm, b = 2291.6(10) pm, c = 1739.9(9) pm, ß = 95.98(5)°] are reported. The green complex transforms into a brown compound at room-temperature; the transformation is (partly) reversibly. Solutions of NCS-anions and Cu2+ are redox unstable. The structure of a resulting product: (PPh4)2[Cu2(NCS)2] [Space group C2/c, Z = 4; a = 1235.4(1) pm, b = 1347.1(2) pm, c = 2953.4(11) pm, ß = 99.36(2)°] with Cu(I) dimers and two bridging NCS- ligands is also reported.  相似文献   

19.
Synthesis and Structure of Tetrafluoroaurates(III) MI[AuF4] with MI = Li, Rb Single crystal investigations on Rb[AuF4], light yellow, confirm the tetragonal unit cell (K[BrF4]-type) with a = 618.2(1) and c = 1191(1) pm, Z = 4, space group I 4/mcm-D (No. 140). Li[AuF4], light yellow too, crystallizes monoclinic with a = 485.32(7), b = 634.29(8), c = 1004.43(13) pm, β = 92.759(12), Z = 4; space group P 2/c-C (No. 13). The structure of Li[AuF4] is related to the Rb[AuF4]-type of structure.  相似文献   

20.
Phosphaneimine and Phosphoraneiminato Complexes of Boron. Synthesis and Crystal Structures of [BF3(Me3SiNPEt3)], [BCl2(NPPh3)]2, [BCl2(NPEt3)]2, [B2Cl3(NPEt3)2]+BCl4?, and [B2Cl2(NPiPr3)3]+BCl4? The title compounds have been prepared from the corresponding silylated phosphaneimines and boron trifluoride etherate and boron trichloride, respectively. The compounds form white moisture sensitive crystals, which were characterized by 11B-nmr-spectroscopy, IR-spectroscopy and by crystal structure determinations. [BF3(Me3SiNPEt3)] : Space group P21/c, Z = 4, R = 0.032 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1361.0, b = 819.56, c = 1422.5 pm, β = 109.86°. The donor acceptor complex forms monomeric molecules with a B? N bond length of 157.8 pm. [BCl2(NPPh3)]2 · 2 CH2Cl2 : Space group P21/c, Z = 2, R = 0.049 for reflections with I > 2σ(I). Lattice dimensions at ?50°C: a = 1184.6, b = 2086.4, c = 843.0 pm, β = 96.86°. The compound forms centrosymmetric dimeric molecules in which the boron atoms are linked to B2N2 four-membered rings with B? N distances of 152.7 pm via μ2-N bridges of the NPPh3 groups. [BCl2(NPEt3)]2 : Space group Pbca, Z = 4, R = 0.029 for reflections with I > 2σ(I). Lattice dimensions at ?90°C: a = 1269.5, b = 1138.7, c = 1470.3 pm. The compound has a molecular structure corresponding to the phenyl compound with B? N ring distances of 151.0 pm. [B2Cl3(NPEt3)2]+BCl4? : Space group Pbca, Z = 8, R = 0.034 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1309.3, b = 1619.8, c = 2410.7 pm. Within the cations the boron atoms are linked to planar, asymmetrical B2N2 four-membered rings with B? N distances of 155.1 and 143.1 pm via the μ2-N atoms of the NPEt3 groups. [B2Cl2(NPiPr3)3]+BCl4? · CH2Cl2: Space group Pna2, Z = 4, R = 0.033 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1976.5, b = 860.2, c = 2612.7 pm. Within the cations the boron atoms are linked to planar, asymmetrical B2N2 four-membered rings with B? N distances of 153.7 and 150.5 pm via the μ2-N atoms of two of the NPiPr3 groups. The third NPiPr3 group is terminally connected to the sp2-hybridized boron atom with a B? N distance of 133.5 pm and with a B? N? P bond angle of 165.3°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号