首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we proposed a higher-order moment method in the lattice Boltzmann model for the conservation law equation. In contrast to the lattice Bhatnagar–Gross–Krook (BGK) model, the higher-order moment method has a wide flexibility to select equilibrium distribution function. This method is based on so-called a series of partial differential equations obtained by using multi-scale technique and Chapman–Enskog expansion. According to Hirt’s heuristic stability theory, the stability of the scheme can be controlled by modulating some special moments to design the third-order dispersion term and the fourth-order dissipation term. As results, the conservation law equation is recovered with higher-order truncation error. The numerical examples show the higher-order moment method can be used to raise the accuracy of the truncation error of the lattice Boltzmann scheme for the conservation law equation.  相似文献   

2.
In the brief note entitled On Conservation Laws for Dissipative Systems [4], a new method for constructing conservation laws was proposed. This method was termed the Neutral Action (NA) method in [5]. For any system governed by a set of differential equations, the NA method offers a systematic approach for determination of conservation laws applicable to the system. It is the purpose of the present paper to establish conservation laws for one- and two-dimensional viscoelasticy (Voigt model) via the NA method. The conservation laws derived should prove useful in studies of fracture and defects in a viscoelastic material.  相似文献   

3.
In the present paper, the recent method of conservation laws for constructing exact solutions for systems of nonlinear partial differential equations is applied to the gasdynamic equations describing one-dimensional and three-dimensional polytropic flows. In the one-dimensional case singular solutions are constructed in closed forms. In the three-dimensional case several conservation laws are used simultaneously. It is shown that the method of conservation laws leads to particular solutions different from group invariant solutions.  相似文献   

4.
In this paper we investigate the conservation of phase space volume of the Boris-SDC algorithm. This method provides a generic way to extend the standard, second-order accurate Lorentz force integrator commonly used for charged particles in an electric and magnetic field to a high-order method using spectral deferred corrections. For a single particle in a Penning trap and different frequencies of the electric and magnetic fields, we assess the conservation properties of the method by computing the update matrix of one step of Boris-SDC as well as its determinant. We compare the results to the convergence regions and relate them to energy conservation properties of the method. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Motivated by many applications (geophysical flows, general relativity), we attempt to set the foundations for a study of entropy solutions to non-linear hyperbolic conservation laws posed on a (Riemannian or Lorentzian) manifold. The flux of the conservation laws is viewed as a vector-field on the manifold and depends on the unknown function as a parameter. We introduce notions of entropy solutions in the class of bounded measurable functions and in the class of measure-valued mappings. We establish the well-posedness theory for conservation laws on a manifold, by generalizing both Kruzkov's and DiPerna's theories originally developed in the Euclidian setting. The class of geometry-compatible (as we call it) conservation laws is singled out as an important case of interest, which leads to robust Lp estimates independent of the geometry of the manifold. On the other hand, general conservation laws solely enjoy the L1 contraction property and leads to a unique contractive semi-group of entropy solutions. Our framework allows us to construct entropy solutions on a manifold via the vanishing diffusion method or the finite volume method.  相似文献   

6.
In this paper, we introduce a new property of two‐dimensional integrable hydrodynamic chains—existence of infinitely many local three‐dimensional conservation laws for pairs of integrable two‐dimensional commuting flows. Infinitely many local three‐dimensional conservation laws for the Benney commuting hydrodynamic chains are constructed. As a by‐product, we established a new method for computation of local conservation laws for three‐dimensional integrable systems. The Mikhalëv equation and the dispersionless limit of the Kadomtsev‐Petviashvili equation are investigated. All known local and infinitely many new quasilocal three‐dimensional conservation laws are presented. Also four‐dimensional conservation laws are considered for couples of three‐dimensional integrable quasilinear systems and for triplets of corresponding hydrodynamic chains.  相似文献   

7.
In this work, we study the integrability aspects of the Schamel–Korteweg–de Vries equation that play an important role in studying the effect of electron trapping on the nonlinear interaction of ion‐acoustic waves by including a quasi‐potential. Lie symmetry analysis together with the simplest equation method and Kudryashov method is used to obtain exact traveling wave solutions for this equation. In addition, conservation laws are constructed using two different techniques, namely, the multiplier method and the new conservation theorem. Using the conservation laws and symmetries of the underlying equation, double reduction and exact solution were also constructed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
A natural generalization of Godunov's method for Courant numbers larger than 1 is obtained by handling interactions between neighboring Riemann problems linearly, i.e., by allowing waves to pass through one another with no change in strength or speed. This method is well defined for arbitrarily large Courant numbers and can be written in conservation form. It follows that if a sequence of approximations converges to a limit u(x,t) as the mesh is refined, then u is a weak solution to the system of conservation laws. For scalar problems the method is total variation diminishing and every sequence contains a convergent subsequence. It is conjectured that in fact every sequence converges to the (unique) entropy solution provided the correct entropy solution is used for each Riemann problem. If the true Riemann solutions are replaced by approximate Riemann solutions which are consistent with the conservation law, then the above convergence results for general systems continue to hold.  相似文献   

9.
The space–time conservation element and solution element (CE-SE) scheme is a method that improves the well-established methods, like finite differences or finite elements: the integral form of the problem exploits the physical properties of conservation of flow, unlike the differential form. Also, this explicit scheme evaluates the variable and its derivative simultaneously in each knot of the partitioned domain. The CE-SE method can be used for solving the advection-diffusion equation.In this paper, a new numerical method for solving the advection-diffusion equation, based in the CE-SE method is developed. This method increases the spatial precision and it is validated with an analytical solution.  相似文献   

10.
《Quaestiones Mathematicae》2013,36(2):199-214
Abstract

In this paper we study the combined sinh-cosh-Gordon equation, which arises in mathematical physics and has a wide range of scientific applications that range from chemical reactions to water surface gravity waves. We employ Lie symmetry analysis along with the simplest equation method to obtain exact solutions based on the optimal systems of one-dimensional subalgebras for the combined sinh-cosh-Gordon equation. Furthermore, conservation laws for the combined sinh-cosh-Gordon equation are derived by employing two different methods; the direct method and new conservation theorem.  相似文献   

11.
In the first part of this paper we define solutions for certain nonlinear equations defined by accretive operators, “dissipative solution”. This kind of solution is equivalent to the viscosity solutions for Hamilton-Jacobi equations and to the entropy solutions for conservation laws.In this paper we use dissipative solutions to obtain several relaxation limits for systems of semilinear transport equations and quasilinear conservation laws. These converge to diffusion second-order equations and in one case to a single conservation law. The relaxation limit is obtained using a version of the perturbed test function method to pass to the limit. This guarantees existence for the considered equations.  相似文献   

12.
利用直接方法研究了非线性对流扩散方程的守恒律,得到了关于非线性对流扩散方程的守恒律乘子性质的一个定理.利用这个定理,可以简化守恒律乘子的确定方程.随后通过对确定方程中的变量函数进行分析,发现在四种情况下乘子的确定方程是可解的.最后解出这些守恒律乘子,利用积分公式法分别得到了四种情况下对应于各个守恒律乘子的守恒律.  相似文献   

13.
This paper gives a rigorous error analysis of the multisymplectic Fourier pseudospectral method for the nonlinear fractional Schrödinger equation. The method preserves some intrinsic structure properties including the generalized multisymplectic conservation law. By rewriting it in a matrix form similar to that in the finite difference method, the method is shown to be convergent in the discrete L2 norm with the second-order accuracy in time and spectral accuracy in space. The key techniques in the analysis include the discrete energy method, cutoff of the nonlinearity, and a posterior bound of numerical solutions by using the inverse inequality. In a similar line, the convergence result for the symplectic Fourier pseudospectral method can also be established. Moreover, the errors in the local and global energy conservation laws of discrete systems are also investigated. Numerical tests are performed to confirm the theoretical results.  相似文献   

14.
In this paper, we study the preservation of quadratic conservation laws of Runge-Kutta methods and partitioned Runge-Kutta methods for Hamiltonian PDEs and establish the relation between multi-symplecticity of Runge-Kutta method and its quadratic conservation laws. For Schrödinger equations and Dirac equations, it reveals that multi-symplectic Runge-Kutta methods applied to equations with appropriate boundary conditions can preserve the global norm conservation and the global charge conservation, respectively.  相似文献   

15.
J.H.M. ten Thije Boonkkamp 《PAMM》2007,7(1):2020049-2020050
Expressions for the numerical flux of a conservation law of advection-diffusion-reaction type are derived from a local solution of the entire conservation law, including the source term. The resulting complete flux scheme is given for one-dimensional (in Cartesian and spherical coordinates) and two-dimensional model equations. Combined with a finite volume method, the numerical scheme is second order accurate, uniformly in the Peclet numbers. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
This paper is an application of the variational derivative method to the derivation of the conservation laws for partial differential equations. The conservation laws for (1+1) dimensional compacton k(2,2) and compacton k(3,3) equations are studied via multiplier approach. Also the conservation laws for (2+1) dimensional compacton Zk(2,2) equation are established by first computing the multipliers.  相似文献   

17.
It is shown that shock waves for the compressible Navier-Stokes equations are nonlinearly stable. A perturbation of a shock wave tends to the shock wave, properly translated in phase, as time tends to infinity. Through the consideration of conservation of mass, momentum and energy we obtain an a priori estimate of the amount of translation of the shock wave and the strength of the linear and nonlinear diffusion waves that arise due to the perturbation. Our techniques include the energy method for parabolic-hyperbolic systems, the decomposition of waves, and the energy-characteristic method for viscous conservation laws introduced earlier by the author.  相似文献   

18.
We propose a new finite volume method for scalar conservation laws with stochastic time–space dependent flux functions. The stochastic effects appear in the flux function and can be interpreted as a random manner to localize the discontinuity in the time–space dependent flux function. The location of the interface between the fluxes can be obtained by solving a system of stochastic differential equations for the velocity fluctuation and displacement variable. In this paper we develop a modified Rusanov method for the reconstruction of numerical fluxes in the finite volume discretization. To solve the system of stochastic differential equations for the interface we apply a second-order Runge–Kutta scheme. Numerical results are presented for stochastic problems in traffic flow and two-phase flow applications. It is found that the proposed finite volume method offers a robust and accurate approach for solving scalar conservation laws with stochastic time–space dependent flux functions.  相似文献   

19.
The problem of correspondence between symmetries and conservation laws for one-layer shallow water wave systems in the plane flow, axisymmetric flow and dispersive waves is investigated from the composite variational principle of view in the development of the study [N.H. Ibragimov, A new conservation theorem, Journal of Mathematical Analysis and Applications, 333(1) (2007) 311–328]. This method is devoted to construction of conservation laws of non-Lagrangian systems. Composite principle means that in addition to original variables of a given system, one should introduce a set of adjoint variables in order to obtain a system of Euler–Lagrange equations for some variational functional. After studying Lie point and Lie–Bäcklund symmetries, we obtain new local and nonlocal conservation laws. Nonlocal conservation laws comprise nonlocal variables defined by the adjoint equations to shallow water wave systems. In particular, we obtain infinite local conservation laws and potential symmetries for the plane flow case.  相似文献   

20.
In this paper we prove conservation theorems for theories of classical first-order arithmetic over their intuitionistic version. We also prove generalized conservation results for intuitionistic theories when certain weak forms of the principle of excluded middle are added to them. Members of two families of subsystems of Heyting arithmetic and Buss-Harnik’s theories of intuitionistic bounded arithmetic are the intuitionistic theories we consider. For the first group, we use a method described by Leivant based on the negative translation combined with a variant of Friedman’s translation. For the second group, we use Avigad’s forcing method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号