首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An algorithm to simulate three-dimensional high compressible flows using the finite element method and a multi-time-step integration technique with subcycles is presented in this work. An explicit two-step Taylor–Galerkin scheme is adopted to integrate in time the continuum equations. When explicit schemes are used, the time-steps must satisfy the CFL stability conditions. If the smallest critical time-step is adopted uniformly for the whole domain, the integration scheme may consume a large amount of CPU time. Multi-time-step integration techniques are very suitable in these cases because elements and nodes are separated into several groups and a different time-step is assigned to each group. In this way, each group of elements is integrated with a time interval which is much closer to the critical time-steps of the elements in the group. This results in great computational savings, mainly when element sizes and properties are very different, leading to significant differences in the local critical time-step values. Multi-time-steps integration techniques are also very useful in transient problems, taking into account that at the end of each subcycle, values of the unknowns at the same time level are obtained. The multi-time-step algorithm is applied to analyze the supersonic flow (Mach=8.5) past a sphere immersed in a non-viscous flow, and the results and computational performance are compared with those obtained when a uniform time-step is used over the whole domain.  相似文献   

2.
Explicit time differencing methods for solving differential equations are advantageous in that they are easy to implement on a computer and are intrinsically very parallel. The disadvantage of explicit methods is the severe restrictions that are placed on stable time-step intervals. Stability bounds for explicit time differencing methods on advective–diffusive problems are generally determined by the diffusive part of the problem. These bounds are very small and implicit methods are used instead. The linear systems arising from these implicit methods are generally solved by iterative methods. In this article we develop a methodology for increasing the stability bounds of standard explicit finite differencing methods by combining explicit methods, implicit methods, and iterative methods in a novel way to generate new time-difference schemes, called preconditioned time-difference methods. A Jacobi preconditioned time differencing method is defined and analyzed for both diffusion and advection–diffusion equations. Several computational examples of both linear and nonlinear advective-diffusive problems are solved to demonstrate the accuracy and improved stability limits. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
In this note, a non‐standard finite difference (NSFD) scheme is proposed for an advection‐diffusion‐reaction equation with nonlinear reaction term. We first study the diffusion‐free case of this equation, that is, an advection‐reaction equation. Two exact finite difference schemes are constructed for the advection‐reaction equation by the method of characteristics. As these exact schemes are complicated and are not convenient to use, an NSFD scheme is derived from the exact scheme. Then, the NSFD scheme for the advection‐reaction equation is combined with a finite difference space‐approximation of the diffusion term to provide a NSFD scheme for the advection‐diffusion‐reaction equation. This new scheme could preserve the fixed points, the positivity, and the boundedness of the solution of the original equation. Numerical experiments verify the validity of our analytical results. Copyright © 2014 JohnWiley & Sons, Ltd.  相似文献   

4.
In this paper a semi-implicit finite volume method is proposed to solve the applications with moving interfaces using the approach of level set methods. The level set advection equation with a given speed in normal direction is solved by this method. Moreover, the scheme is used for the numerical solution of eikonal equation to compute the signed distance function and for the linear advection equation to compute the so-called extension speed [1]. In both equations an extrapolation near the interface is used in our method to treat Dirichlet boundary conditions on implicitly given interfaces. No restrictive CFL stability condition is required by the semi-implicit method that is very convenient especially when using the extrapolation approach. In summary, we can apply the method for the numerical solution of level set advection equation with the initial condition given by the signed distance function and with the advection velocity in normal direction given by the extension speed. Several advantages of the proposed approach can be shown for chosen examples and application. The advected numerical level set function approximates well the property of remaining the signed distance function during whole simulation time. Sufficiently accurate numerical results can be obtained even with the time steps violating the CFL stability condition.  相似文献   

5.
The numerical solution of the Euler equations requires the treatment of processes in different temporal scales. Sound waves propagate fast compared to advective processes. Based on a spatial discretisation on staggered grids, a multirate time integration procedure is presented here generalising split-explicit Runge-Kutta methods. The advective terms are integrated by a Runge-Kutta method with a macro stepsize restricted by the CFL number. Sound wave terms are treated by small time steps respecting the CFL restriction dictated by the speed of sound.Split-explicit Runge-Kutta methods are generalised by the inclusion of fixed tendencies of previous stages. The stability barrier for the acoustics equation is relaxed by a factor of two.Asymptotic order conditions for the low Mach case are given. The relation to commutator-free exponential integrators is discussed. Stability is analysed for the linear acoustic equation. Numerical tests are executed for the linear acoustics and the nonlinear Euler equations.  相似文献   

6.
The earlier fractional step algorithm for solving the diffusion–migration equation in electrochemistry is extended to a multi-dimensional multi-species system with second-order spatial accuracy. For each time-step increment, the algorithm consists of three stages: (i) diffusion, (ii) satisfaction of the electroneutrality constraint, and (iii) migration. Each stage accounts for one individual physical process. Exact analytical solutions are derived for a two-species system and comparisons between exact and numerical results are made. Numerical results are also obtained for a two-dimensional three-species electrochemical model. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
A nonconforming (Crouzeix–Raviart) finite element method with subgrid viscosity is analyzed to approximate advection‐diffusion‐reaction equations. The error estimates are quasi‐optimal in the sense that keeping the Péclet number fixed, the estimates are suboptimal of order in the mesh size for the L2‐norm and optimal for the advective derivative on quasi‐uniform meshes. The method is also reformulated as a finite volume box scheme providing a reconstruction formula for the diffusive flux with local conservation properties. Numerical results are presented to illustrate the error analysis. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

8.
This paper deals with development and analysis of finite volume schemes for a one-dimensional nonlinear, degenerate, convection-diffusion equation having application in petroleum reservoir and groundwater aquifer simulation. The main difficulty is that the solution typically lacks regularity due to the degenerate nonlinear diffusion term. We analyze and compare three families of numerical schemes corresponding to explicit, semi-implicit, and implicit discretization of the diffusion term and a Godunov scheme for the advection term. L stability under appropriate CFL conditions and BV estimates are obtained. It is shown that the schemes satisfy a discrete maximum principle. Then we prove convergence of the approximate solution to the weak solution of the problem. Results of numerical experiments using the present approach are reported.  相似文献   

9.
An efficient and reliable a posteriori error estimate is derived for linear parabolic equations which does not depend on any regularity assumption on the underlying elliptic operator. An adaptive algorithm with variable time-step sizes and space meshes is proposed and studied which, at each time step, delays the mesh coarsening until the final iteration of the adaptive procedure, allowing only mesh and time-step size refinements before. It is proved that at each time step the adaptive algorithm is able to reduce the error indicators (and thus the error) below any given tolerance within a finite number of iteration steps. The key ingredient in the analysis is a new coarsening strategy. Numerical results are presented to show the competitive behavior of the proposed adaptive algorithm.

  相似文献   


10.
We have studied the effect of advection on reaction–diffusion equations by using toroidal velocity fields. Turing patterns formation in diffusion–advection–reaction problems was studied specifically, considering the Schnackenberg and glycolysis reaction kinetics models. Four cases were analyzed and solved numerically using finite elements. For glycolysis models, the advective effect modified the form of Turing patterns obtained with diffusion–reaction; whereas for Schnackenberg problems, the original patterns distorted themselves slightly, making them rotate in direction of the velocity field. We have also determined that the advective effect surpassed the diffusive one for high values of velocity and instability driven by diffusion was eliminated. On the other hand the advective effect is not considerable for very low values in the velocity field, and there was no modification in the original Turing pattern.  相似文献   

11.
The advection‐diffusion equation has a long history as a benchmark for numerical methods. Taylor‐Galerkin methods are used together with the type of splines known as B‐splines to construct the approximation functions over the finite elements for the solution of time‐dependent advection‐diffusion problems. If advection dominates over diffusion, the numerical solution is difficult especially if boundary layers are to be resolved. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show the behavior of the method with emphasis on treatment of boundary conditions. Taylor‐Galerkin methods have been constructed by using both linear and quadratic B‐spline shape functions. Results shown by the method are found to be in good agreement with the exact solution. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

12.
A discontinuous Galerkin finite element heterogeneous multiscale method is proposed for advection–diffusion problems with highly oscillatory coefficients. The method is based on a coupling of a discontinuous Galerkin discretization for an effective advection–diffusion problem on a macroscopic mesh, whose a priori unknown data are recovered from micro finite element calculations on sampling domains within each macro element. The computational work involved is independent of the high oscillations in the problem at the smallest scale. The stability of our method (depending on both macro and micro mesh sizes) is established for both diffusion dominated and advection dominated regimes without any assumptions about the type of heterogeneities in the data. Fully discrete a priori error bounds are derived for locally periodic data. Numerical experiments confirm the theoretical error estimates.  相似文献   

13.
To solve the 1D (linear) convection-diffusion equation, we construct and we analyze two LBM schemes built on the D1Q2 lattice. We obtain these LBM schemes by showing that the 1D convection-diffusion equation is the fluid limit of a discrete velocity kinetic system. Then, we show in the periodic case that these LBM schemes are equivalent to a finite difference type scheme named LFCCDF scheme. This allows us, firstly, to prove the convergence in L of these schemes, and to obtain discrete maximum principles for any time step in the case of the 1D diffusion equation with different boundary conditions. Secondly, this allows us to obtain most of these results for the Du Fort-Frankel scheme for a particular choice of the first iterate. We also underline that these LBM schemes can be applied to the (linear) advection equation and we obtain a stability result in L under a classical CFL condition. Moreover, by proposing a probabilistic interpretation of these LBM schemes, we also obtain Monte-Carlo algorithms which approach the 1D (linear) diffusion equation. At last, we present numerical applications justifying these results.  相似文献   

14.
15.
An operator splitting method combining finite difference method and finite element method is proposed in this paper by using boundary-fitted coordinate system. The governing equation is split into advection and diffusion equations and solved by finite difference method using boundary-fitted coordinate system and finite element method respectively. An example for which analytic solution is available is used to verified the proposed methods and the agreement is very good. Numerical results show that it is very efficient.  相似文献   

16.

We consider Lagrangian coherent structures (LCSs) as the boundaries of material subsets whose advective evolution is metastable under weak diffusion. For their detection, we first transform the Eulerian advection–diffusion equation to Lagrangian coordinates, in which it takes the form of a time-dependent diffusion or heat equation. By this coordinate transformation, the reversible effects of advection are separated from the irreversible joint effects of advection and diffusion. In this framework, LCSs express themselves as (boundaries of) metastable sets under the Lagrangian diffusion process. In the case of spatially homogeneous isotropic diffusion, averaging the time-dependent family of Lagrangian diffusion operators yields Froyland’s dynamic Laplacian. In the associated geometric heat equation, the distribution of heat is governed by the dynamically induced intrinsic geometry on the material manifold, to which we refer as the geometry of mixing. We study and visualize this geometry in detail, and discuss connections between geometric features and LCSs viewed as diffusion barriers in two numerical examples. Our approach facilitates the discovery of connections between some prominent methods for coherent structure detection: the dynamic isoperimetry methodology, the variational geometric approaches to elliptic LCSs, a class of graph Laplacian-based methods and the effective diffusivity framework used in physical oceanography.

  相似文献   

17.
In this work, we propose a hybrid radial basis functions (RBFs) collocation technique for the numerical solution of fractional advection–diffusion models. In the formulation of hybrid RBFs (HRBFs), there exist shape parameter (c* ) and weight parameter (ϵ) that control numerical accuracy and stability. For these parameters, an adaptive algorithm is developed and validated. The proposed HRBFs method is tested for numerical solutions of some fractional Black–Sholes and diffusion models. Numerical simulations performed for several benchmark problems verified the proposed method accuracy and efficiency. The quantitative analysis is made in terms of L, L2, Lrms , and Lrel error norms as well as number of nodes N over space domain and time-step δt. Numerical convergence in space and time is also studied for the proposed method. The unconditional stability of the proposed HRBFs scheme is obtained using the von Neumann methodology. It is observed that the HRBFs method circumvented the ill-conditioning problem greatly, a major issue in the Kansa method.  相似文献   

18.
We present a simple filtering procedure for stabilizing the spectral element method (SEM) for the unsteady advection–diffusion and Navier–Stokes equations. A number of example applications are presented, along with basic analysis for the advection–diffusion case.  相似文献   

19.
Optimal explicit Runge–Kutta methods consider more stages in order to include a particular spectrum in their stability domain and thus reduce time-step restrictions. This idea, so far used mostly for real-line spectra, is generalized to more general spectra in the form of a thin region. In thin regions the eigenvalues may extend away from the real axis into the imaginary plane. We give a direct characterization of optimal stability polynomials containing a maximal thin region and calculate these polynomials for various cases. Semi-discretizations of hyperbolic–parabolic equations are a relevant application which exhibit a thin region spectrum. As a model, linear, scalar advection–diffusion is investigated. The second-order-stabilized explicit Runge–Kutta methods derived from the stability polynomials are applied to advection–diffusion and compressible, viscous fluid dynamics in numerical experiments. Due to the stabilization the time step can be controlled solely from the hyperbolic CFL condition even in the presence of viscous fluxes.  相似文献   

20.
We compare and investigate the performance of the exact scheme of the Michaelis–Menten (M–M) ordinary differential equation with several new nonstandard finite difference (NSFD) schemes that we construct using Mickens' rules. Furthermore, the exact scheme of the M–M equation is used to design several dynamically consistent NSFD schemes for related reaction‐diffusion equations, advection‐reaction equations, and advection‐reaction‐diffusion equations. Numerical simulations that support the theory and demonstrate computationally the power of NSFD schemes are presented. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号