首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The permeabilities and solubilities of five gases are reported for bisphenol-A polycarbonate (PC), tetramethyl polycarbonate (TMPC), and tetramethyl hexafluoro polycarbonate (TMHFPC) at temperatures up to 200°C. The temperature dependence of permselectivity is discussed in terms of solubility and diffusivity selectivity changes with temperature for CO2/CH4 and He/N2 gas separations. The activation energies for permeation and diffusion and the heats of sorption are also reported for each gas in the three polycarbonates. Analysis of these values provides a better fundamental understanding of the effect of polymer-penetrant interactions and polymer backbone structure on the temperature dependence of the transport and sorption properties of gases in membrane separation processes. Important factors affecting the solubility and diffusivity selectivity losses or gains with increased temperature are also identified through correlation of these data with physical properties of the gases and polymers. These conclusions provide a framework for choosing the most promising membrane materials for particular gas separations at elevated temperatures. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Dry chitosan is an excellent candidate for facilitated transport membranes that can be utilized in industrial applications, such as fuel cell operations and other purification processes. This article is the first to report temperature effects on transport properties of CO2, H2, and N2 in a gas mixture typical of such applications. At a feed pressure of 1.5 atm, CO2 permeabilities increased (0.381–26.1 barrers) at temperatures of 20–150 °C with decreasing CO2/N2 (19.7–4.55) and CO2/H2 (3.14–1.71) separation factors. The pressure effect on solubilities and permeabilities were fitted to the extended dual mode model and its corresponding mixed gas permeation model. The dual mode and transport parameters, the sorption heats and the activation energies of Henry's and Langmuir's regimes and their pre‐exponential parameters were determined. The Langmuir's capacity constants were utilized to estimate chitosan's glass transition temperature (CO2: 172 °C, N2: 175 °C, and H2: 171 °C). The activation energies of diffusion in the Henry's law and Langmuir regimes were dependent on the collision diameter of the gases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2620–2631, 2007  相似文献   

3.
The pure‐gas sorption, diffusion, and permeation properties of ethylbenzene in poly(dimethylsiloxane) (PDMS) are reported at 35, 45, and 55 °C and at pressures ranging from 0 to 4.4 cmHg. Additionally, mixed‐gas ethylbenzene/N2 permeability properties at 35 °C, a total feed pressure of 10 atm, and a permeate pressure of 1 atm are reported. Ethylbenzene solubility increases with increasing penetrant relative pressure and can be described by the Flory–Rehner model with an interaction parameter of 0.24 ± 0.02. At a fixed relative pressure, ethylbenzene solubility decreases with increasing temperature, and the enthalpy of sorption is −41.4 ± 0.3 kJ/mol, which is independent of ethylbenzene concentration and essentially equal to the enthalpy of condensation of pure ethylbenzene. Ethylbenzene diffusion coefficients decrease with increasing concentration at 35 °C. The activation energy of ethylbenzene diffusion in PDMS at infinite dilution is 49 ± 6 kJ/mol. The ethylbenzene activation energies of permeation decrease from near 0 to −34 ± 7 kJ/mol as concentration increases, whereas the activation energy of permeation for pure N2 is 8 ± 2 kJ/mol. At 35 °C, ethylbenzene and N2 permeability coefficients determined from pure‐gas permeation experiments are similar to those obtained from mixed‐gas permeation experiments, and ethylbenzene/N2 selectivity values as high as 800 were observed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1461–1473, 2000  相似文献   

4.
Excess properties calculated from literature values of experimental density and viscosity in N,N-dimethylformamide (DMF) + methanol (Met) binary mixtures (from 303.15 to 323.15 K) can lead us to test different correlation equations as well as their corresponding derivative properties. Inspection of the Arrhenius activation energy (Ea) and the enthalpy (ΔH*) of activation of viscous flow shows very close values; here, we can define partial molar activation energies Ea1 and Ea2 for N,N-DMF and Met, respectively, along with their individual contribution separately. Correlation between the two Arrhenius parameters of viscosity in all compositions shows existence of main distinct interaction behaviours delimited by particular mole fractions in N,N-DMF. In addition, we add that correlation between Arrhenius parameters reveals interesting Arrhenius temperature that is closely related to the vaporisation temperature in the liquid vapour equilibrium, and the limiting corresponding partial molar properties can permit us to estimate the boiling points of the pure components.  相似文献   

5.
Sorption rate curves of CO2, N2, and He gases below 1 atm were measured for polyimide films prepared from benzophenone tetracarboxylic dianhydride (BTDA) with 3,5-diaminotoluene trifluoride (DATF), 2,4-diaminotoluene (DAT), m-phenylenediamine (MPD), and diaminobenzoic acid (DABA). The molecular structures of these four polyimides differ only in the substituent groups of the diamine structure. These polyimides exhibit dualmode type sorption isotherms for carbon dioxide that are concave to the pressure axis, typical of glassy polymer/gas system. The apparent diffusion coefficients below 1 atm pressure of carbon dioxide for this series of compounds decrease in the order: BTDA-DATF > BTDA-DAT > BTDA-MPD > BTDA-DABA. A linear relation between the logarithm of the apparent diffusion coefficient and the reciprocal of free volume, calculated by the method of Bondi using density data, is found for these polyimides. However, this tendency is not observed for the other two gases. The activation energies of the apparent diffusion coefficients at 20 cmHg pressure of carbon dioxide increase with increasing cohesive energy density of the polyimides. The energy per mole of free volume elements in a liquidlike structure in each cohesive energy density may be equated to the activation energy and used to calculate the free volume. The values from the activation energy are almost the same as those from Bondi's method.  相似文献   

6.
Highly permeable glassy polymeric membranes based on poly (1‐trimethylsilyl‐1‐propyne) (PTMSP) and a polymer of intrinsic porosity (PIM‐1) were investigated for water sorption, water permeability and the separation of CO2 from N2 under humid mixed gas conditions. The water sorption isotherms for both materials followed behavior indicative of multilayer adsorption within the microvoids, with PIM‐1 registering a significant water uptake at very high water activities. Analysis of the sorption isotherms using a modified dual sorption model which accounts for such multilayer effects gave Langmuir affinity constants more consistent with lighter gases than the use of the standard dual mode approach. The water permeability through PTMSP and PIM‐1 was comparable over the water activities studied, and could be successfully model ed through a dual mode sorption model with a concentration dependent diffusivity. The water permeability through both membranes as a function of temperature was also measured, and found to be at a minimum at 80 ° C for PTMSP and 70 °C for PIM‐1. This temperature dependence is a function of reducing water solubility in both membranes with increasing temperature countered by increasing water diffusivity. The CO2 ‐ N2 mixed gas permeabilities through PTMSP and PIM‐1 were also measured and model ed through dual mode sorption theory. Introducing water vapour further reduced both the CO2 and N2 permeabilities. The plasticization potential of water in PTMSP was determined and indicated water swelled the membrane increasing CO2 and N2 diffusivity, while for PIM‐1 a negative potential implied that water filling of the microvoids hampered CO2 and N2 diffusion through the membrane. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 719–728  相似文献   

7.
We have determined the intrinsic gas transport properties of He, H2, O2, N2, CH4, and CO2 for a 6FDA-durene polyimide as a function of pressure, temperature and aging time. The permeability coefficients of O2, N2, CH4, and CO2 decrease slightly with increasing pressure. The pressure-dependent diffusion coefficients and solubility coefficients are consistent with the dual-sorption model and partial immobilization. All the gas permeabilities increase with temperature and their apparent activation energies for permeation increase with increasing gas molecular sizes in the order of CO2, O2, N2, and CH4.The percentages of permeability decay after 280 days of aging are 22, 32, 36, 40, 42, and 30% for He, H2, O2, N2, CH4, and CO2, respectively. Interestingly, except for H2 (kinetic diameter of 2.89 Å), the percentages of permeability decay increase exactly in the order of He (kinetic diameter of 2.6 Å), CO2 (3.30 Å), O2 (3.46 Å), N2 (3.64 Å), and CH4 (3.80 Å). The apparent activation energies of permeation for O2, N2, CH4, and CO2 increase with aging because of the increases in activation energies of diffusion and the decreases in solubility coefficients. The activation-energy increase for diffusion is probably due to the decrease in polymeric molar volume because of densification during aging. The reduction in solubility coefficient indicates the available sites for sorption decreasing with aging because of the reduction of microvoids and interstitial chain space.  相似文献   

8.
9.
The gas permeation characteristics of poly(silamine) membrane, which consists of alternating 3,3-dimethyl-3-silapentane and N,N′-diethylethylenediamine units in the main chain, were investigated. Though poly(silamine) shows high flexibility (glass transition temperature of −88°C), the gas permeabilities were much lower than those of other rubbery polymers such as poly(dimethylsiloxane) and natural rubber. The activation energies of diffusion in poly(silamine) were much higher than that of natural rubber. On the basis of these results, we propose a model such that the interaction between the Si atom and gas molecules (O2 and N2) prevents the free diffusion of the gas molecule in the poly(silamine) membrane. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
The gas‐transport properties of one of a family of well‐known adhesives, Loctite 350®, were studied. Permeability, solubility, and diffusivity coefficients, together with the activation energies of diffusion and permeation and the solution enthalpy, were determined from 20 to 40 °C for oxygen, nitrogen, carbon dioxide, and methane. Loctite 350® showed relatively high permselectivity and permeability for the gas pairs O2/N2 and CO2/CH4, especially for the former. The possibility of preparing very thin layers on various kinds of supports from these photocurable polymers makes them promising materials for gas‐separation devices. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 786–795, 2001  相似文献   

11.
Permeability of gases in polymers depends strongly upon the polymer structure, the gas type, as well as the conditions of temperature and film thickness. The in-use temperature and thickness of the polymer membrane can play the most important role on preservation and prolongation of food shelf-life. In this work the gas transmission parameters of six Bi-axially Oriented Polypropylene (BOPP) films were investigated as a function of temperature, gas type and thickness. O2, CO2, N2, N2O, C2H4, Air (79%N2/21%O2) and Modified Atmosphere (MA) of 79%N2O/21%O2 were used as test gas. In order to understand the kinetic of the process, by the activation energy determination, samples were tested at a different temperature, from 10 °C to 40 °C. Gas Transmission Rate (GTR), solubility (S) and diffusion (D) relationship was investigated. The gas/thickness/temperature correlation was reflected in the obtained perm-selectivity ratios and a good linear correlation was found only at 23 °C. Deviations recorded were attributed to temperature fluctuations. Gas transmission process follows the Arrhenius model while the solubility/diffusion process shows consistent deviation, correlated to the temperature and the thickness of the film. By Differential Scanning Calorimetry (DSC) a different crystallinity percentage was recorded, whose influence was evidenced only in the sorption/diffusion processes. The melting temperature remained unchanged. FT-IR Spectroscopy was also carried out to confirm the morphology.  相似文献   

12.
Excess properties calculated from the literature values of experimental density and viscosity in N,N-dimethylacetamide + formamide binary mixtures between 298.15 K and 318.15 K can lead us to test different correlation equations as well as their corresponding relative functions. Inspection of the Arrhenius activation energy Ea and the enthalpy of activation of viscous flow ΔH* shows very close values. Here, we can define partial molar activation energies Ea1 and Ea2 for N,N-dimethylacetamide and formamide, respectively, along with their individual contribution separately. Correlation between the two Arrhenius parameters of viscosity in all compositions shows the existence of two main distinct behaviours separated by the mole fraction equal to 0.3 of N,N-dimethylacetamide. In addition, the correlation between Arrhenius parameters reveals interesting Arrhenius temperature, which is closely related to the vaporisation temperature in the liquid vapour equilibrium and the limiting corresponding partial molar properties can permit us to predict the boiling points of the pure components.  相似文献   

13.
The sorption and permeation of pentane, hexane, and toluene through highly permeable polymer of intrinsic microporosity (PIM‐1) membranes were investigated. It was established that the hydrocarbons sorbed strongly within the micro‐void regions of the PIM‐1 membrane. The sorption concentration was similar for the paraffins, pentane and hexane, but greater for aromatic toluene at high vapor activities. The magnitude of the hydrocarbon permeability was associated with the critical temperature of the hydrocarbon. The PIM‐1 membrane displayed selectivity for the three hydrocarbons over CO2. As a consequence, the presence of the three hydrocarbons dramatically reduced the permeability of CO2 and N2 under mixed gas–vapor conditions to 68%–95% below the dry gas value. For all three hydrocarbons the N2 permeability was more strongly impacted than CO2 permeability, and hence the ideal CO2/N2 selectivity of PIM‐1 increased. It was determined that CO2 and N2 solubility decreased because of hydrocarbon competitive sorption while CO2 and N2 diffusivity also decreased because of anti‐plasticization, which was due to the presence of hydrocarbon clusters within the membrane structure. There was a clear correlation between the magnitude of anti‐plasticization and the critical temperature of the hydrocarbon. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 397–404  相似文献   

14.
非等温反应过程中新的动力学方程   总被引:1,自引:0,他引:1       下载免费PDF全文
成一 《无机化学学报》2006,22(2):287-292
对于非等温过程中的动力学方程,正确的Arrhenius方程的温度积分应该是从T2到T1,但是许多动力学方程中的温度积分是从T到0 K,例如Ozawa等方程。我们的研究指出对于某些反应,这些方程中的活化能存在较大的误差,因此我们提出了一个新的动力学方程。凭借等转化率法,应用新的方程可以精确求解线性或非线性加热过程中化学反应的活化能。用新方程对2个经典反应(聚酰胺的热裂解和一水草酸钙的热分解)的研究表明:Ozawa方程的活化能有时是精确的,有时偏差太大。  相似文献   

15.
The poly(ethylene oxide) (PEO) was introduced by the cross-linking method in the commercial Matrimid 5218. The two kinds of membranes were prepared from the Matrimid 5218 and the cross-linkers poly(propylene glycol) block poly(ethylene glycol) block poly(propylene glycol) diamine (PPG/PEG/PPGDA) with different molecular weights. The cross-linking reaction process was monitored by FTIR. The cross-linked Matrimid 5218 membranes display excellent CO2 permeability and CO2/light gas selectivity. The effects of cross-linkers with different molecular weights on gel content, thermal properties and H2, CO2, N2 and CH4 gas transport properties were reported. The effect of temperature on gas transport properties was also reported, and the permeabilities of these materials as a function of temperature were compared with other gas membrane materials.  相似文献   

16.
The solubility, diffusivity, and permeability of ethylbenzene in poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) at 35, 45 and 55 °C were determined using kinetic gravimetric sorption and pure gas permeation methods. Ethylbenzene solubility in PTMSP was well described by the generalized dual‐mode model with χ = 0.39 ± 0.02, b = 15 ± 1, and CH = 45 ± 4 cm3 (STP)/cm3 PTMSP at 35 °C. Ethylbenzene solubility increased with decreasing temperature; the enthalpy of sorption at infinite dilution was −40 ± 7 kJ/mol and was essentially equal to the enthalpy change upon condensation of pure ethylbenzene. The diffusion coefficient of ethylbenzene in PTMSP decreased with increasing concentration and decreasing temperature. Activation energies of diffusion were very low at infinite dilution and increased with increasing concentration to a maximum value of 50 ± 10 kJ/mol at the highest concentration explored. PTMSP permeability to ethylbenzene decreased with increasing concentration. The permeability estimated from solubility and diffusivity data obtained by kinetic gravimetric sorption was in good agreement with permeability determined from direct permeation experiments. Permeability after exposure to a high ethylbenzene partial pressure was significantly higher than that observed before the sample was exposed to a higher partial pressure of ethylbenzene. Nitrogen permeability coefficients were also determined from pure gas experiments. Nitrogen and ethylbenzene permeability coefficients increased with decreasing temperature, and infinite dilution activation energies of permeation for N2 and ethylbenzene were −5.5 ± 0.5 kJ/mol and −74 ± 11 kJ/mol, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1078–1089, 2000  相似文献   

17.
Functional‐group‐oriented polymerization strategies have contributed significantly to the initial development of porous polymers and have led to the utilization of several well‐known organic transformations in the synthesis of these polymers. Because there are multiple polymerization routes that can be used to introduce the same chemical functionality, it is very important to demonstrate the effect of different polymerization routes on the gas‐sorption properties of these chemically similar polymers. Herein, we have studied the rich chemistry of azobenzenes and synthesized four chemically similar nanoporous azobenzene polymers (NABs) with surface areas of up to 1021 m2 g?1. The polymerization routes have a significant impact on the pore‐size distributions of the NABs, which directly affects the temperature dependence of the CO2/N2 selectivity. A pore‐width maximum of 6–8 Å, narrow pore‐size distribution, and small particle size (20–30 nm) were very critical for high CO2/N2 selectivity and N2 phobicity, which is associated with azo linkages and realized at warm temperatures. Our findings collectively suggest that an investigation of different polymerization routes for the same chemical functionalization is critical to understand fully the combined effect of textural properties, local environment, and chemical functionalization on the gas‐sorption properties of nanoporous polymers.  相似文献   

18.
Modification of the gas transport properties of rolltruded isotactic poly(propylene) films have been studied. Changes in the amorphous solubility, diffusivity, and the activation energies of CO2, N2, and CH4 in iPP rolltruded at 150°C for draw ratios to ca. 20 are recorded. At this processing temperature variations in the transport coefficients have been found to be weakly dependent upon draw ratio and do not suffer the dramatic reductions often reported in uniaxially drawn polymers. In general, the morphological differences between uniaxially drawn and rolltruded films are subtle and are responsible for the significant difference in the measured transport properties. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Despite efforts by the membrane community to develop polymeric materials with improved O2/N2 separation performance, limited progress has occurred for almost a decade. Molecular sieving media, which can exhibit gas separation properties superior to polymers, tend to be brittle and uneconomical to produce for large‐scale membrane separation processes. Considering this, the polymer structures investigated in this work were designed to mimic aspects of the structure of molecular sieving media such as zeolites and carbon molecular sieves while maintaining the processability associated with polymers. Significantly attractive gas separation material properties were obtained using hyper rigid polypyrrolone copolymers with controlled packing disruptions between flat, packable segments. The gas transport properties in the materials changed dramatically as a result of different average interchain spacing. Moreover, all of the polypyrrolones studied in this work exhibited performance lying on or above the existing O2/N2 upper bound trade‐off line between permselectivity and permeability. These results, therefore, may point the way to a new cycle of membrane materials improvements for gas separations. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1235–1249, 1999  相似文献   

20.
Structures and energies have been calculated, in the MNDO approximation, for xanthan hydride (C2H2N2S3) and its molecular cation, and for the mass spectral fragment ions H2NCNCS+, HNCNCS+, CS2+, H2N2CS+ (two isomers), HN2CS+, S2+, H2NCS+ (three isomers), HNCS+ (two isomers), H3N2C2+ (four isomers), CS+ and HNCS+2 (two isomers), together with the corresponding neutral fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号