首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
On the Chemical Transport of SiAs using Iodine — Experiments and Thermochemical Calculations Using iodine as transport agent siliconarsenide migrates in a temperature gradient. The direction of the migration depends on the chosen temperature and the concentration of the transport agent. The transport rates were measured for various transport agent concentrations (0.0002 ? C(I2) ≥ 0,02 mmol/cm3) and for various mean transport temperatures (650 ? T? ? 1 000°C). For low temperatures (e.g. T1 = 750°C→T2 = 850°C), low iodine concentrations (e.g. C(I2) = 0.001 mmol/cm3) and in the presence of H2O (from wall of silica ampoule) the following exothermic reaction is responsible for the deposition of SiAs-crystals in the sink region:
  • SiAss + 4HIg = SiI4,g + 2H2,g + 1/4As4,g
In case of higher temperatures (e.g. T2 = 1 050°C→T1 = 950°C) and higher iodine concentrations (e.g. C(I2) = 0.02 mmol/cm3) SiI4,g is the transport agent. According to model calculations the following endothermic reaction is responsible for the migration of SiAs to the region of the lower temperature:
  • SiAss + SiI4,g = 2SiI2,g + 1/4As4,g
The heterogeneous and homogenous equilibria will be discussed and an explanation of the non equilibrium transport behaviour of SiAs is given. Thermochemical data of SiAs are characterized by the quartzmembrane zero manometer technique and further verified by model calculations.  相似文献   

2.
On the Chemical Vapour Transport of Chromium and Manganese Monophosphide. Experimental Results and Thermochemical Calculations Using iodine as transport agent well shaped crystals of a volume up to V ≈? 50 mm3 (CrP) or an edgelength of approximately 1 ≈? 10 mm (MnP) can be grown. CrP has been deposited at the lower temperature of a temperature gradient (1050 → 950°C). At a density of the transport agent higher than D = 26 · 10?6 [mol I2/cm3] CrP and CrI2,1 coexist in the deposition region at the lower temperature. The determined composition of the condensed phases under equilibrium conditions are in accordance with thermochemical calculations assuming the heat of formation of CrP to be ΔFH= ?25.5 ± 2 [kcal/mol]. Furthermore these calculations show that the solution of CrP in the gas phase leads to CrI2,g, Cr2I4,g, P2,g and P4,g, while I2,g, HIg, PI3,g and P2I4,g have to be considered as transport agents. The migration of MnP (1000 → 1100°C) results from an exothermic reaction. MnPs exists besides MnI2,1 in the source region. Thermochemical calculations are in good agreement with the experimental results and suggest the following heterogenous equilibrium to be responsible for the observed behaviour: .  相似文献   

3.
Investigations on the Crystallization of Rhodium(III) Oxo Compounds – Chemical Vapour Transport of Rh2O3 using Chlorine Rh2O3,s migrates in chemical transport experiments with chlorine as transport agent from the higher (T2) to the lower (T1) temperature of a gradient (ΔT = 100°) due to endothermal reactions (900°C < T ≤ 1050°C; T = 0,5 · (T2 + T1)). Under the conditions of transport experiments RhCl3,s is observed in most experiments as equilibrium solid besides the sesquioxide. The transport rates for Rh2O3,s and the sublimation rates for RhCl3,s grow with increasing temperature T . The composition of the equilibrium solids, the rates of migration and the sequence of deposition (1. RhCl3,s, 2. Rh2O3,s) is well reproduced by thermodynamic model calculations. As a result of this calculations the transport behaviour of the system Rh2O3,s/Cl2 is determined by the two equilibria The influence of RhCl2,g and RhCl4,g on the transport behaviour of Rh2O3,s as well as the possible occurence of RhOCl2,g in the equilibrium gas phase will be discussed. Predictions of the transport behaviour of ternary rhodium(III) oxo compounds will be made.  相似文献   

4.
On the Chemical Transport of Molybdenum using HgBr2 ? Experiments and Thermochemical Calculations . Mo migrates under the influence of HgBr2 in a temperature gradient (e.g. 1 000→900°C). Besides elementary Mo we observed in some experiments the occurence of MoBr2 and MoO2 (from oxygen containing impurities) respectively. The transport behaviour (deposition sequence; deposition rates of various phases) has been enlightened by continous measurement of the mass change during the transport experiments using a special “transport balance”. Thus obtained deposition rates m(Mo) for molybdenum reached in the temperature region 800 ≤ T ≤ 1 040°C a maximum at T = 980°C independend from the starting material (Mo or Mo/MoO2 mixtures). For variable densities D of transport agent at a constant temperature (T = 950°C) increasing values for m(Mo) were observed (m(Mo) = 23 mg/h, Dmax = 8.61 mg HgBr2/cm3). Thermochemical calculation give strong evidence for the migration of Mo via the endothermal reaction . The experimental deposition rates are about half as large than the calculated values. Good agreement between calculations and experiments were obtained only assuming the presense of oxygen in the starting materials.  相似文献   

5.
On the Migration of SiAs without using a Transport Agent – Experiments and Thermochemical Calculations SiAs migrates in a temperature gradient (T = 0.5 · (T1 + T2) = 850 to 1000°C) without adding a transport agent, into the cooler part of the silica ampoule. The migration rate depends on the temperature and the partial pressure of elemental arsenic in the silica tube. The migration rates were measured for various arsenic concentrations (0 ≤ n(As) ≤ 4 mmol/20 cm3) and for various mean transport temperatures (850 ≤ T le; 1000°C). In case of increasing the temperature the migration rate rises (e.g. T = 850°C, ?(exp.) = 0.006 mg/h; T = 1000°C, ?(exp.) = 0.044 mg/h). Adding arsenic (e.g. n(As) = 0.11 mmol, ?(exp.) = 0.067 mg/h; n(As) = 4.0 mmol, ?(exp.) = 0.82 mg/h), gives also the result of an increasing migration rate. Augmenting the pressure by adding argon as inert gas has only a small effect to the migration rate of SiAs. To explain the mechanism of the migration by using model calculations, the thermochemical data of the gaseous species SiAsg and SiAs3, g have to be estimated. According to model calculations an endothermic reaction like the following one is responsible for the migration of SiAs the region of the lower temperature: SiAss + 2 Asn, g = SiAs3, g (1 ≤ n ≥ 4).  相似文献   

6.
On the Chemical Transport of Tungsten using HgBr2 – Experiments and Thermochemical Calculations Using HgBr2 as transport agent tungsten migrates in a temperature gradient from the region of higher temperature to the lower temperature (e.g. 1 000 → 900°C). The transport rates were measured for various transport agent concentrations (0.64 ? C(HgBr2) ? 11.74 mg/cm3; T? = 950°C) and for various mean transport temperatures (800 ? T? ? 1 040°C). Under these conditions tungsten crystals were observed in the sink region. To observe the influence of tungsten dioxide (contamination of the tungsten powder) on the transport behaviour of tungsten, experiments with W/WO2 as starting materials were performed. According to model calculations the following endothermic reactions are important for the migration of tungsten: In the presence of H2O or WO2 other equilibria play a role, too. Using a special “transport balance” we observed a delay of deposition of tungsten (e.g. T? = 800°C; 15 h delay of deposition) with W and W/WO2 as starting materials. The heterogeneous and homogeneous equilibria will be discussed and an explanation for the non equilibrium transport behaviour of tungsten will be given.  相似文献   

7.
On the Chemical Transport and Sublimation of CrBr3 — Experiments and Model Calculations The migration of CrBr3 in the presence of high concentrations of bromine (for example D(Br2) = 0,05 mmol/ml; closed silica ampoules) in the investigated temperature range (T? = 625°C to 875°C; T? = 50°C) is a result from the endothermic reaction The chemical transport of CrBr3 is superimposed with the sublimation. With low concentrations of D(Br2) and high temperatures T? is the sublimation decisive participated. This is a result of the homogenous equilibrium between CrBr3,g and CrBr4,g (2a) The reaction (2a) in comparison with the chemical transport of CrCl3 with Cl2 (Gl. (2b)) is more shifted to CrBr3,g.  相似文献   

8.
On the Chemical Transport of Molybdenum using SbBr3 – Experiments and Thermochemical Calculations Mo migrates in a temperature gradient from the region of higher temperature to the lower temperature using SbBr3 as transport agent. For various mean transport temperatures (750 ? T ? 1000°C; T = 0,5 (T1 + T2); T2 ? T1 = 100°C) we observed small transport rates (? ? 0,6 mg/h) which rise up to 16 mg/h for higher transport agent concentrations. Small amounts of MoO2 and Sb were detected beside Mo in the sink. The observed solid phases in the sink are in agreement with thermodynamical calculations by CVTrans which also demonstrate that the formation of MoO2 and Sb as well as the transport effect of SbBr3 are caused by traces of H2O from the quartz glass wall. The sequence of deposition of Mo, MoO2 and Sb in the examined temperature range can be calculated (CVTrans) and measured with the transport balance.  相似文献   

9.
On the Chemical Transport of Cr2O3 with CrI3/I2 – Experiments and Model-Calculations for Participation of CrOI2,g Gaseous chromium oxyiodides that were unknown up to now cause the migration of Cr2O3 in the temperature gradient 1 000°C→900°C when iodine (e. g. 0.1 mmol/ml) and CrI3 is added (eq. (1)). Transport agent for Cr2O3 is gaseous CrI4. With a smaller concentration of iodine (D(I2) ? 0.016 mmol/ml) and lower temperatures (e.g. T? = 850°C) the influence of H2O (from the wall of the silica ampoule) becomes more important. Under these conditions the transport of Cr2O3 is a result from the endothermic reactions (2), (3) and (4). H2,g has on the basis of the decomposition of HIg a positive difference of the solubility and H2,g should not to be considered as a transport agent. Because of the range of equilibrium-values the reaction 4 has to be taken into consideration. Estimated value of the enthalpie for CrOI2,g is fixed more precisely by thermodynamic model calculation to Δf298(CrOI2,g) = ?51.4 kcal/mol. The estimated limit of error for the enthalpie of formation is smaller than ± 5 kcal/mol. Without an addition of CrI3 is in the system Cr2O3/I2 a migration of Cr2O3 not observable.  相似文献   

10.
Contributions on the Thermal Behaviour of Sulphates. XVI. The Chemical Vapour Transport of Ga2(SO4)3 with Cl2 and HCl. Experimental Results and Calculations Crystals of anhydrous Ga2(SO4)3 can be grown by means of CVT (e. g. 525°C → 475°C) in the less hot region of a closed silica ampoule. We investigated the dependance of the deposition rate on the concentration of the transport agent (Cl2, HCl) and the transport temperature (475°C ≤ T ≤ 750°C; T2 > T1; ΔT = 50°C; T = 0.5(T1 + T2)). Experimental results and thermodynamic calculations on the basis of ΔFH 298 º (Ga2(SO4)3) = ?686.5 kcal/mol show a good agreement.  相似文献   

11.
Chemical transport of vanadiummonophosphide with iodine Well shaped crystals of vanadiummonophosphide can be grown by CVT using iodine as transport agent (e. g. → 900°C). As a result of thermodynamical calculations the evaporation and deposition of VP should be expressed by the following exothermic equilibrium At higher temperatures and low concentrations of Iodine, combined with desorption of moisture from the walls of the silica ampules endothermic deposition of VP according to has been observed. Assuming ΔB298(VPs) = ?61 [kcal/mol] a satisfying agreement between thermodynamical calculations and experimental results can be reached.  相似文献   

12.
Differential scanning calorimetry (DSC) can be used to infer the distribution of lamellar crystal thickness l. For homopolymers, the relation between melting temperature T and thickness is described by the Gibbs relation. In this case the weight distribution function of thickness g(l) ∝ P(T)(TT)2, where P(T) is DSC power and T is the melting temperature of an infinitely thick crystal. Copolymer melting is affected by the concentration of noncrystallizable comonomer in the melt as well as lamellar thickness. Unknown melt composition in copolymers with nonequilibrium crystallinity makes determination of the correct distribution g(l) from DSC impossible. An approximate distribution g2(l) ∝ P(T)(TT)2 is proposed, where T is based on Flory's equilibrium crystallization theory. This approximate distribution is most accurate when crystallinity is small, that is, near the upper end of the melting range. Results are reported for polyethylene homopolymer and model ethylene–butene random copolymers. Corrections were not made for distortion of the DSC endotherms by thermal lag or by melting and recrystallization; these experiments are primarily to illustrate the effect of analysis in terms of an incorrect g3(l) ∝ P(T). Average crystal thicknesses are about 20 nm for polyethylene and 5 nm for the copolymers. Distributions are characterized by lw /ln ≤ 1.1 in all cases. Width of the melting range is not a reliable indicator of the breadth of the thickness distribution. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3131–3140, 1999  相似文献   

13.
Transport effect of HCl on NiO and MgO according to between T2 = 1000°C and T1 = 800°C was calculated by the model of diffusion in dependence of total pressure; for comparison, the classical transport of α-Fe2O3 was analogously treated. By experimental determination of the transport rates at total pressures from 0.009 to 6 atm hitherto not considered influences of the amount and surface of the starting material, and of the transport time were found. These effects are explained by a (not in detail defined) term of ?sorption”? of the transport gas onto the powder of the starting material. For an explanation of the transport rates estimations of the diffusion coefficients of the gas pairs FeCl3–HCl and NiCl2–HCl were performed and the vapour pressure diagrams of NiCl2 and MgCl2 evaluated.  相似文献   

14.
Thermochemical Investigations of the Systems Ti/Ni and Ti/Co By treatment of solid Ni or Co with a H2/TiCl4-gas mixture at sufficient high temperature (T ≥ 900°C) the intermetallic phases TiNi3 and TiCo3, resp., are formed. The conversion grade depends on the H2/TiCl4-ratio. From the experimentally determined conversion grades and the known thermodynamic data of all other species existing in equilibrium the free enthalpies and the heats of formation of TiN3 and TiCo3 have been calculated (TiNi3: ΔH(298) = ?133.3 ± 6 kJ/mol; TiCo3: ΔH(298) = ?104.7 ± 6 kJ/mol).  相似文献   

15.
Synthesis and Crystal Structure of Alkali Metal Diamido Dioxosilicates M2SiO2(NH2)2 with M ? K, Rb and Cs SiO2 – α-quartz – reacts with alkali metal amides MNH2 (M ? K, Rb, and Cs) in molar ratios from 1:2 to 1:10 at 450°C ≤ T ≤ 600°C and P(NH3) = 6 kbar in autoclaves to diamidodioxosilicates M[SiO2(NH2)2]. Crystals of the colourless compounds which hydrolyze rapidly were investigated by x-ray methods. Following data characterize the structure determination on the isotypic compounds: The structures of the diamidodioxosilicates are closely related to the β? K2SO4 type. They contain isolated [SiO2(NH2)2]2? ions. K+ ions and hydrogen bridge bonds N? H…?O (with 2.68 Å ≤ d(N…?O) ≤ 2.78 Å for the K compound) connect the tetrahedral anions.  相似文献   

16.
The transference numbers of HCl in water at 25°C have been determined up to 8 mol-kg?1 by using cells with transference. The problem of the solubility of AgCl from Ag/AgCl electrodes was avoided by employing dilute chlorine gas/iridium electrodes for T H and hydrogen gas/platinum electrodes for T Cl . The sums of the independently measured T H and T Cl values never differed from unity by more than 0.9%. The cation constituent transference number of HCl was also measured at 1M by the recently modified moving boundary method, but at higher concentrations the Soret effect produced unacceptably large current dependences. Combination of these transference numbers with literature conductances, diffusion coefficients and activity coefficients led to a new set of phenomenological transport coefficients l ij . The resulting curve for l12/c vs. c behaves more normally than did the curve based on previous transference numbers.  相似文献   

17.
On the Chemical Transport of CrOCl and Cr2O3 - Experiments and Model Calculations for Participation of CrOCl2,g . The migration of CrOCl in a temperature gradient (600°C→500°C) in the presence of chlorine is a result from an endothermic reaction . Above T2 = 900°C several reactions are super imposed and Cr2O3, the product of the decomposition of CrOCl, migrates following the endothermic reaction . By continously monitoring the mass changes during the complete duration of the experiment the consecutive stationary deposition reactions could be registered separately and nonstationary changes in the gasphase could be recognized. The observed decomposition of solid CrOCl into Cr2O3,s as well as CrCl3,g under equilibrium conditions is in accordance with thermochemical calculations assuming the heat of formation of CrOCl to be ΔBH = - 135.3 ± 2 [kcal/mol]. Using this value the chemical transport of CrOCl with Cl2, HCl, and HgCl2 can be described.  相似文献   

18.
Three arylene difluoride monomers containing phosphine oxide ( 1 ), phosphinic acid ( 2 ), or phosphinate ester ( 3 ) groups were prepared and polymerized with bisphenol A to give novel poly-(arylene ether)s ( 4 , 5 , and 6 ). The polymers obtained had moderate molecular weights (ηinh: 0.14–0.30 dL g−1 in N-methylpyrrolidinone) and glass-transition temperatures (Tg: 102–200 °C), depending on the phosphine group in the main chain. Using bis(4-fluorophenyl)sulfone as a comonomer improved the polymerization to give copolymers with higher solution viscosities. The stoichiometric investigation revealed that 7 mol % excess of fluoride monomer gave the highest molecular weight copolymer 8 with ηinh of 0.78 dL g−1, which had a Tg of 176 °C, a T of 432 °C, and formed a hard film by casting from solution. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1854–1859, 2001  相似文献   

19.
Time-resolved measurements of the oxygen atom concentration during shock-wave initiated combustion of low-density (25 ≤ p ≤ 175 kPa) H2? O2? CO? CO2? Ar mixtures have been made by monitoring CO + O → CO2 + hv (3 to 4 eV) emission intensity, calibrated against partial equilibrium conditions attained promptly at H2:O2 = 1. Significant transient excursions (“spikes”) of [O] above constant-mole-number partial-equilibrium levels were found from 1400 to 2000°K for initial H2:O2 ratios of 16 and 10 and below ± 1780°K for H2:O2 = 6; they did not occur in this range for H2:O2 ± 4. Numerical treatment of the H2? O2? CO ignition mechanism for our conditions showed [O] to follow a steady-state trajectory governed by large production and consumption rates from the reactions with a pronounced maximum in the production term ka[H][O2]. The measured spike concentration data determine kb/ka = 3.6 ± 20%, independent of temperature over 1400 ≤ T ≤ 1900°K, which with well-established ka data yields This result reinforces the higher of several recent combustion-temperature determinations, and its correlation with results below 1000°K produces a distinctly concave upward Arrhenius plot which is closely matched by BEBO transition state calculations.  相似文献   

20.
An interesting comparative case study on thermomechanical cycles including programming, cooling, unloading and heating to trigger the 1WE was done using Veriflex® at 62°C (T < Tg close to and below 5°C of Tg) and also at 72°C (T > Tg, close to and above 5°C of Tg) for slightly low strains (?m = 70%) and the recovery time of 10 min. Accumulation of strain was estimated during the thermomechanical treatments for using both 70% strains at 62°C (T < Tg), as well as at 72°C (T > Tg). Recovery ratios for 70% strains at 62°C (T < Tg), as well as for 72°C (T > Tg) were also estimated. It turns out that programming, cooling, unloading and heating to trigger the 1WE causes an increase of irreversible strain and is associated with a corresponding decrease of the intensity of the 1WE, in particular, during the first thermomechanical cycles. A LSCM (Laser Scanning Confocal Microscopic) study shows very little change in surface structure which evolved during cycling up to 70% strains at 72°C (T > Tg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号