首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Rate constants for the gas-phase reactions of the four oxygenated biogenic organic compounds cis-3-hexen-1-ol, cis-3-hexenylacetate, trans-2-hexenal, and linalool with OH radicals, NO3 radicals, and O3 have been determined at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained were (in cm3 molecule?1 s?1 units): cis-3-hexen-1-ol: (1.08 ± 0.22) × 10?10 for reaction with the OH radical; (2.72 ± 0.83) × 10?13 for reaction with the NO3 radical; and (6.4 ± 1.7) × 10?17 for reaction with O3; cis-3-hexenylacetate: (7.84 ± 1.64) × 10?11 for reaction with the OH radical; (2.46 ± 0.75) × 10?13 for reaction with the NO3 radical; and (5.4 ± 1.4) × 10?17 for reaction with O3; trans-2-hexenal: (4.41 ± 0.94) × 10?11 for reaction with the OH radical; (1.21 ± 0.44) × 10?14 for reaction with the NO3 radical; and (2.0 ± 1.0) × 10?18 for reaction with O3; and linalool: (1.59 ± 0.40) × 10?10 for reaction with the OH radical; (1.12 ± 0.40) × 10?11 for reaction with the NO3 radical; and (4.3 ± 1.6) × 10?16 for reaction with O3. Combining these rate constants with estimated ambient tropospheric concentrations of OH radicals, NO3 radicals, and O3 results in calculated tropospheric lifetimes of these oxygenated organic compounds of a few hours. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Kinetics of the substitution reaction of solvent molecule in uranyl(VI) Schiff base complexes by tri‐n‐butylposphine as the entering nucleophile in acetonitrile at 10–40°C was studied spectrophotometrically. The second‐order rate constants for the substitution reaction of the solvent molecule were found to be (8.8 ± 0.5) × 10?3, (5.3 ± 0.2) × 10?3, (7.5 ± 0.3) × 10?3, (6.1 ± 0.3) × 10?3, (13.5 ± 1.6) × 10?3, (13.2 ± 0.9) × 10?3, (52.9 ± 0.2) × 10?3, and (88.1 ± 0.6) × 10?3 M?1 s?1 at 40°C for [UO2(Schiff base)(CH3CN)], where Schiff base = L1–L8, respectively. In a temperature dependence study, the activation parameters ΔH# and ΔS# for the reaction of uranyl complexes with PBu3 were determined. From the linear rate dependence on the concentration of PBu3, the span of k2 values and the large negative values of the activation entropy, an associative (A) mechanism is deduced for the solvent substitution. By comparing the second‐order rate constants k2, it was concluded that the steric and the electronic properties of the complexes were important for the rate of the reactions.  相似文献   

3.
The rate coefficient for the gas‐phase reaction of chlorine atoms with acetone was determined as a function of temperature (273–363 K) and pressure (0.002–700 Torr) using complementary absolute and relative rate methods. Absolute rate measurements were performed at the low‐pressure regime (~2 mTorr), employing the very low pressure reactor coupled with quadrupole mass spectrometry (VLPR/QMS) technique. The absolute rate coefficient was given by the Arrhenius expression k(T) = (1.68 ± 0.27) × 10?11 exp[?(608 ± 16)/T] cm3 molecule?1 s?1 and k(298 K) = (2.17 ± 0.19) × 10?12 cm3 molecule?1 s?1. The quoted uncertainties are the 2σ (95% level of confidence), including estimated systematic uncertainties. The hydrogen abstraction pathway leading to HCl was the predominant pathway, whereas the reaction channel of acetyl chloride formation (CH3C(O)Cl) was determined to be less than 0.1%. In addition, relative rate measurements were performed by employing a static thermostated photochemical reactor coupled with FTIR spectroscopy (TPCR/FTIR) technique. The reactions of Cl atoms with CHF2CH2OH (3) and ClCH2CH2Cl (4) were used as reference reactions with k3(T) = (2.61 ± 0.49) × 10?11 exp[?(662 ± 60)/T] and k4(T) = (4.93 ± 0.96) × 10?11 exp[?(1087 ± 68)/T] cm3 molecule?1 s?1, respectively. The relative rate coefficients were independent of pressure over the range 30–700 Torr, and the temperature dependence was given by the expression k(T) = (3.43 ± 0.75) × 10?11 exp[?(830 ± 68)/T] cm3 molecule?1 s?1 and k(298 K) = (2.18 ± 0.03) × 10?12 cm3 molecule?1 s?1. The quoted errors limits (2σ) are at the 95% level of confidence and do not include systematic uncertainties. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 724–734, 2010  相似文献   

4.
The interaction of cisplatin with guanine DNA bases has been investigated using ab initio Hartree–Fock (HF) and density functional levels of theory in gas phase and aqueous solution. The overall process was divided into three steps: the reaction of the monoaqua [Pt(NH3)2Cl(H2O)]+ species with guanine (G) (reaction 1), the hydrolysis process yielding the adduct [Pt(NH3)2(G) (H2O)]2+ (reaction 2) and the reaction with a second guanine leading to the product [Pt(NH3)2(G)2]2+ (reaction 3). The functionals B3LYP, BHandH, and mPW1PW91 were used in the present study, to develop an understanding of the role of the distinct models. The geometries presented for the intermediate structures were obtained by IRC calculations from the transition state structure for each reaction. The structural analysis for the intermediates and transition states showed that hydrogen bonds with the guanine O6 atom play an important role in stabilizing these species. The geometries were not very sensitive to the level of theory applied with the HF level, giving a satisfactory overall performance. However, the energy barriers and the rate constants were found to be strongly dependent on the level of calculation and basis set, with the DFT calculations giving more accurate results. For reaction 1 the rate constant calculated in aqueous solution at PCM‐BHandH/6‐311G* (k1 = 7.55 × 10?1 M?1 s?1) was in good agreement with the experiment (5.4 × 10?1 M?1 s?1). The BHandH/6‐31G* calculated gas phase rate constants for reactions 2 and 3 were: k2 = 0.9 × 10?6 M?1 s?1 and k3 = 2.99 × 10?4 M?1 s?1 in fairly good accordance with the experimental findings for reaction 2 (1.0 × 10?6 M?1 s?1) and reaction 3 (3.0 × 10?4 M?1 s?1). © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

5.
The reaction of atomic chlorine with CH3CH2OD has been examined using a discharge fast flow system coupled to a mass spectrometer combined with the relative rate method (RR/DF/MS). At 298 ± 2 K, the rate constant for the Cl + CH3CH2OD reaction was determined using cyclohexane as a reference and found to be k3 = (1.13 ± 0.21) × 10?10 cm3 molecule?1 s?1. Mass spectral studies of the reaction products resulted in yields greater than 97% for the combined hydrogen abstraction at the α and β sites (3a + 3b) and less than 3% at the hydroxyl site (3c). As a calibration of the apparatus and the RR/DF/MS technique, the rate constant of the Cl + CH3CH2OH reaction was also determined using cyclohexane as the reference, and a value of k2 = (1.05 ± 0.07) × 10?10 cm3 molecule?1 s?1 was obtained at 298 ± 2 K, which was in excellent agreement with the value given in current literature. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 584–590, 2004  相似文献   

6.
The kinetics of reactions of OH radical with n‐heptane and n‐hexane over a temperature range of 240–340K has been investigated using the relative rate combined with discharge flow/mass spectrometry (RR/DF/MS) technique. The rate constant for the reaction of OH radical with n‐heptane was measured with both n‐octane and n‐nonane as references. At 298K, these rate constants were determined to be k1, octane = (6.68 ± 0.48) × 10?12 cm3 molecule?1 s?1 and k1, nonane = (6.64 ± 1.36) × 10?12 cm3 molecule?1 s?1, respectively, which are in very good agreement with the literature values. The rate constant for reaction of n‐hexane with the OH radical was determined to be k2 = (4.95 ± 0.40) × 10?12 cm3 molecule?1 s?1 at 298K using n‐heptane as a reference. The Arrhenius expression for these chemical reactions have been determined to be k1, octane = (2.25 ± 0.21) × 10?11 exp[(?293 ± 37)/T] and k2 = (2.43 ± 0.52) × 10?11 exp[(?481.2 ± 60)/T], respectively. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 489–497, 2011  相似文献   

7.
Rate coefficients for the gas‐phase reaction of isoprene with nitrate radicals and with nitrogen dioxide were determined. A Teflon collapsible chamber with solid phase micro extraction (SPME) for sampling and gas chromatography with flame ionization detection (GC/FID) and a glass reactor with long‐path FTIR spectroscopy were used to study the NO3 radical reaction using the relative rate technique with trans‐2‐butene and 2‐buten‐1‐ol (crotyl alcohol) as reference compounds. The rate coefficients obtained are k(isoprene + NO3) = (5.3 ± 0.2) × 10?13 and k(isoprene + NO3) = (7.3 ± 0.9) × 10?13 for the reference compounds trans‐2‐butene and 2‐buten‐1‐ol, respectively. The NO2 reaction was studied using the glass reactor and FTIR spectroscopy under pseudo‐first‐order reaction conditions with both isoprene and NO2 in excess over the other reactant. The obtained rate coefficient was k(isoprene + NO2) = (1.15 ± 0.08) × 10?19. The apparent rate coefficient for the isoprene and NO2 reaction in air when NO2 decay was followed was (1.5 ± 0.2) × 10?19. The discrepancy is explained by the fast formation of peroxy nitrates. Nitro‐ and nitrito‐substituted isoprene and isoprene‐peroxynitrate were tentatively identified products from this reaction. All experiments were conducted at room temperature and at atmospheric pressure in nitrogen or synthetic air. All rate coefficients are in units of cm3 molecule?1 s?1, and the errors are three standard deviations from a linear least square analyses of the experimental data. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 37: 57–65, 2005  相似文献   

8.
We have developed a technique for generating high concentrations of gaseous OH radicals in a reaction chamber. The technique, which involves the UV photolysis of O3 in the presence of water vapor, was used in combination with the relative rate method to obtain rate constants for reactions of OH radicals with selected species. A key improvement of the technique is that an O3/O2 (3%) gas mixture is continuously introduced into the reaction chamber, during the UV irradiation period. An important feature is that a high concentration of OH radicals [(0.53–1.2) × 1011 radicals cm?3] can be produced during the irradiation in continuous, steady‐state experiment. Using the new technique in conjunction with the relative rate method, we obtained the rate constant for the reaction of CHF3 (HFC‐23) with OH radicals, k1. We obtained k1(298 K) = (3.32 ± 0.20) × 10?16 and determined the temperature dependence of k1 to be (0.48 ± 0.13) × 10?12 exp[?(2180 ± 100)/T] cm3 molecule?1 s?1 at 253–328 K using CHF2CF3 (HFC‐125) and CHF2Cl (HCFC‐22) as reference compounds in CHF3–reference–H2O gas mixtures. The value of k1 obtained in this study is in agreement with previous measurements of k1. This result confirms that our technique for generating OH radicals is suitable for obtaining OH radical reaction rate constants of ~10?16 cm3 molecule?1 s?1, provided the rate constants do not depend on pressure. In addition, it also needed to examine whether the reactions of sample and reference compound with O3 interfere the measurement when selecting this technique. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 317–325, 2003  相似文献   

9.
The total rate constant for the reaction of Cl atoms with HO2NO2 was found to be less than 1.0 × 10?13 cm3 s?1 at 296 K by the discharge flow/resonance fluorescence technique. The reaction was also studied by the discharge flow/mass spectrometric technique. k1a + k1b was measured to be (3.4 ± 1.4) × 10?14 cm3 s?1 at 296 K. The reaction is too slow to be of any importance in stratospheric chemistry.  相似文献   

10.
The kinetics of oxidation of tartaric acid (TAR) by peroxomonosulfate (PMS) in the presence of Cu(II) and Ni(II) ions was studied in the pH range 4.05–5.20 and also in alkaline medium (pH ~12.7). The rate was calculated by measuring the [PMS] at various time intervals. The metal ions concentration range used in the kinetic studies was 2.50 × 10?5 to 1.00 × 10?4 M [Cu(II)], 2.50 × 10?4 to 2.00 × 10?3M [Ni(II)], 0.05 to 0.10 M [TAR], and µ = 0.15 M. The metal(II) tartarates, not TAR/tartarate, are oxidized by PMS. The oxidation of copper(II) tartarate at the acidic pH shows an appreciable induction period, usually 30–60 min, as in classical autocatalysis reaction. The induction period in nickel(II) tartarate is small. Analysis of the [PMS]–time profile shows that the reactions proceed through autocatalysis. In alkaline medium, the Cu(II) tartarate–PMS reaction involves autocatalysis whereas Ni(II) tartarate obeys simple first‐order kinetics with respect to [PMS]. The calculated rate constants for the initial oxidation (k1) and catalyzed oxidation (k2) at [TAR] = 0.05 M, pH 4.05, and 31°C are Cu(II) (1.00 × 10?4 M): k1 = 4.12 × 10?6 s?1, k2 = 7.76 × 10?1 M?1s?1 and Ni(II) (1.00 × 10?3 M): k1 = 5.80 × 10?5 s?1, k2 = 8.11 × 10?2 M?1 s?1. The results suggest that the initial reaction is the oxidative decarboxylation of the tartarate to an aldehyde. The aldehyde intermediate may react with the alpha hydroxyl group of the tartarate to give a hemi acetal, which may be responsible for the autocatalysis. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 620–630, 2011  相似文献   

11.
The kinetics of the gas-phase reaction of Cl atoms with CF3I have been studied relative to the reaction of Cl atoms with CH4 over the temperature range 271–363 K. Using k(Cl + CH4) = 9.6 × 10?12 exp(?2680/RT) cm3 molecule?1 s?1, we derive k(Cl + CF3I) = 6.25 × 10?11 exp(?2970/RT) in which Ea has units of cal mol?1. CF3 radicals are produced from the reaction of Cl with CF3I in a yield which was indistinguishable from 100%. Other relative rate constant ratios measured at 296 K during these experiments were k(Cl + C2F5I)/k(Cl + CF3I) = 11.0 ± 0.6 and k(Cl + C2F5I)/k(Cl + C2H5Cl) = 0.49 ± 0.02. The reaction of CF3 radicals with Cl2 was studied relative to that with O2 at pressures from 4 to 700 torr of N2 diluent. By using the published absolute rate constants for k(CF3 + O2) at 1–10 torr to calibrate the pressure dependence of these relative rate constants, values of the low- and high-pressure limiting rate constants have been determined at 296 K using a Troe expression: k0(CF3 + O2) = (4.8 ± 1.2) × 10?29 cm6 molecule?2 s?1; k(CF3 + O2) = (3.95 ± 0.25) × 10?12 cm3 molecule?1 s?1; Fc = 0.46. The value of the rate constant k(CF3 + Cl2) was determined to be (3.5 ± 0.4) × 10?14 cm3 molecule?1 s?1 at 296 K. The reaction of Cl atoms with CF3I is a convenient way to prepare CF3 radicals for laboratory study. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
The rate constants k1 for the reaction of CF3CF2CF2CF2CF2CHF2 with OH radicals were determined by using both absolute and relative rate methods. The absolute rate constants were measured at 250–430 K using the flash photolysis–laser‐induced fluorescence (FP‐LIF) technique and the laser photolysis–laser‐induced fluorescence (LP‐LIF) technique to monitor the OH radical concentration. The relative rate constants were measured at 253–328 K in an 11.5‐dm3 reaction chamber with either CHF2Cl or CH2FCF3 as a reference compound. OH radicals were produced by UV photolysis of an O3–H2O–He mixture at an initial pressure of 200 Torr. Ozone was continuously introduced into the reaction chamber during the UV irradiation. The k1 (298 K) values determined by the absolute method were (1.69 ± 0.07) × 10?15 cm3 molecule?1 s?1 (FP‐LIF method) and (1.72 ± 0.07) × 10?15 cm3 molecule?1 s?1 (LP‐LIF method), whereas the K1 (298 K) values determined by the relative method were (1.87 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CHF2Cl reference) and (2.12 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CH2FCF3 reference). These data are in agreement with each other within the estimated experimental uncertainties. The Arrhenius rate constant determined from the kinetic data was K1 = (4.71 ± 0.94) × 10?13 exp[?(1630 ± 80)/T] cm3 molecule?1 s?1. Using kinetic data for the reaction of tropospheric CH3CCl3 with OH radicals [k1 (272 K) = 6.0 × 10?15 cm3 molecule?1 s?1, tropospheric lifetime of CH3CCl3 = 6.0 years], we estimated the tropospheric lifetime of CF3CF2CF2CF2CF2CHF2 through reaction with OH radicals to be 31 years. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 26–33, 2004  相似文献   

13.
Rate constants for the gas phase reactions of O3 and OH radicals with 1,3-cycloheptadiene, 1,3,5-cycloheptatriene, and cis- and trans-1,3,5-hexatriene and also of O3 with cis-2,trans-4-hexadiene and trans -2,trans -4-hexadiene have been determined at 294 ± 2 K. The rate constants determined for reaction with O3 were (in cm3 molecule-1s?1 units): 1,3-cycloheptadiene, (1.56 ± 0.21) × 10-16; 1,3,5-cycloheptatriene, (5.39 ± 0.78) × 10?17; 1,3,5-hexatriene, (2.62 ± 0.34) × 10?17; cis?2,trans-4-hexadiene, (3.14 ± 0.34) × 10?16; and trans ?2, trans -4-hexadiene, (3.74 ± 0.61) × 10?16; with the cis- and trans-1,3,5-hexatriene isomers reacting with essentially identical rate constants. The rate constants determined for reaction with OH radicals were (in cm3 molecule?1 s?1 units): 1,3-cycloheptadiene, (1.31 ± 0.04) × 10?10; 1,3,5-cycloheptatriene, (9.12 × 0.23) × 10?11; cis-1,3,5-hexatriene, (1.04 ± 0.07) × 10?10; and trans 1,3,5-hexatriene, (1.04 ± 0.17) × 10?10. These data, which are the first reported values for these di- and tri-alkenes, are discussed in the context of previously determined O3 and OH radical rate constants for alkenes and cycloalkenes.  相似文献   

14.
The reaction IO + CH3SCH3 → products (3) was studied at room temperature and near 1 Torr pressure of He, using the discharge flow mass spectrometric technique. The rate constant was found to be k3 = (1.5 ± 0.5) × 10?11 cm3 molecule?1 s?1. CH3S(O)CH3 was detected as a product suggesting the following channel: IO + CH3SCH3 → CH3S(O)CH3 + I. The rate constant of the reaction IO + IO → products (1) was also measured: k1 = (3 ± 0.5) × 10?11 at 298 K and 1 Torr pressure. The atmospheric implication of reaction (3) is discussed. The results indicate that this reaction could be a potential important sink of CH3SCH3 in marine atmosphere.  相似文献   

15.
The gas phase reaction of the hydroxyl radical with the unsaturated peroxyacyl nitrate CH2 ? C(CH3)C(O)OONO2 (MPAN) has been studied at 298 ± 2 K and atmospheric pressure. The OH-MPAN reaction rate constant relative to that of OH + n-butyl nitrate is 2.08 ± 0.25. This ratio, together with a literature rate constant of 1.74 × 10?12 cm3 molecule?1 s?1 for the OH + n-butyl nitrate reaction at 298 K, yields a rate constant of (3.6 ± 0.4)× 10?12 cm3 molecule?1 s?1 for the OH-MPAN reaction at 298 ± 2 K. Hydroxyacetone and formaldehyde are the major carbonyl products. The yield of hydroxyacetone, 0.59 ± 0.12, is consistent with preferential addition of OH at the unsubstituted carbon atom. Atmospheric persistence and removal processes for MPAN are briefly discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
The rate coefficient, k1, for the gas‐phase reaction OH + CH3CHO (acetaldehyde) → products, was measured over the temperature range 204–373 K using pulsed laser photolytic production of OH coupled with its detection via laser‐induced fluorescence. The CH3CHO concentration was measured using Fourier transform infrared spectroscopy, UV absorption at 184.9 nm and gas flow rates. The room temperature rate coefficient and Arrhenius expression obtained are k1(296 K) = (1.52 ± 0.15) × 10?11 cm3 molecule?1 s?1 and k1(T) = (5.32 ± 0.55) × 10?12 exp[(315 ± 40)/T] cm3 molecule?1 s?1. The rate coefficient for the reaction OH (ν = 1) + CH3CHO, k7(T) (where k7 is the rate coefficient for the overall removal of OH (ν = 1)), was determined over the temperature range 204–296 K and is given by k7(T) = (3.5 ± 1.4) × 10?12 exp[(500 ± 90)/T], where k7(296 K) = (1.9 ± 0.6) × 10?11 cm3 molecule?1 s?1. The quoted uncertainties are 2σ (95% confidence level). The preexponential term and the room temperature rate coefficient include estimated systematic errors. k7 is slightly larger than k1 over the range of temperatures included in this study. The results from this study were found to be in good agreement with previously reported values of k1(T) for temperatures <298 K. An expression for k1(T), suitable for use in atmospheric models, in the NASA/JPL and IUPAC format, was determined by combining the present results with previously reported values and was found to be k1(298 K) = 1.5 × 10?11 cm3 molecule?1 s?1, f(298 K) = 1.1, E/R = 340 K, and Δ E/R (or g) = 20 K over the temperature range relevant to the atmosphere. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 635–646, 2008  相似文献   

17.
Rate constants of Br atom reactions have been determined using a relative kinetic method in a 20 l reaction chamber at total pressures between 25 and 760 torr in N2 + O2 diluent over the temperature range 293–355 K. The measured rate constants for the reactions with alkynes and alkenes showed dependence upon temperature, total pressure, and the concentration of O2 present in the reaction system. Values of (6.8 ± 1.4) × 10?15, (3.6 ± 0.7) × 10?14, (1.5 ± 0.3) × 10?12, (1.6 ± 0.3) × 10?13, (2.7 ± 0.5) × 10?12, (3.4 ± 0.7) × 10?12, and (7.5 ± 1.5) × 10?12 (units: cm3 s?1) have been obtained as rate constants for the reactions of Br with 2,2,4-trimethylpentane, acetylene, propyne, ethene, propene, 1-butene, and trans-2-butene, respectively, in 760 torr of synthetic air at 298 K with respect to acetaldehyde as reference, k = 3.6 × 10?12 cm3 s?1. Formyl bromide and glyoxal were observed as primary products in the reaction of Br with acetylene in air which further react to form CO, HBr, HOBr, and H2O2. Bromoacetaldehyde was observed as an primary product in the reaction of Br with ethene. Other observed products included CO, CO2, HBr, HOBr, BrCHO, bromoethanol, and probably bromoacetic acid.  相似文献   

18.
The UV absorption spectrum and kinetics of CH2I and CH2IO2 radicals have been studied in the gasphase at 295 K using a pulse radiolysis UV absorption spectroscopic technique. UV absorption spectra of CH2I and CH2IO2 radicals were quantified in the range 220–400 nm. The spectrum of CH2I has absorption maxima at 280 nm and 337.5 nm. The absorption cross-section for the CH2I radicals at 337.5 nm was (4.1 ± 0.9) × 10?18 cm2 molecule?1. The UV spectrum of CH2IO2 radicals is broad. The absorption cross-section at 370 nm was (2.1 ± 0.5) × 10?18 cm2 molecule?1. The rate constant for the self reaction of CH2I radicals, k = 4 × 10?11 cm3 molecule?1 s?1 at 1000 mbar total pressure of SF6, was derived by kinetic modelling of experimental absorbance transients. The observed self-reaction rate constant for CH2IO2 radicals was estimated also by modelling to k = 9 × 10?11 cm3 molecule?1 s?1. As part of this work a rate constant of (2.0 ± 0.3) × 10?10 cm3 molecule?1 s?1 was measured for the reaction of F atoms with CH3I. The branching ratios of this reaction for abstraction of an I atom and a H atom were determined to (64 ± 6)% and (36 ± 6)%, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
The kinetics of formation of the 1?:?1 complex of chromium(III) with 1,3-propanediamine-N,N′-diacetate-N,N′-di-3-propionate (1,3-pddadp) were followed spectrophotometrically at λ max?=?557?nm. The reaction was first-order in chromium(III). Increasing the 1,3-pddadp concentration from 2.2?×?10?2 to 0.11?mol?dm?3 accelerated the reaction rate. Increasing the hydrogen ion concentration from 1.995?×?10?5 to 6.31?×?10?4 mol?dm?3 retarded the reaction rate. The reaction rate was also retarded by increasing ionic strength and dielectric constant of the reaction medium. A mechanism was suggested to account for the results obtained which involves ion-pair formation between the various reactants. Values of 22?kJ?mol?1 and ?115?J?K?1 mol?1 were obtained for the energy and the entropy of activation, respectively, which indicate an associative mechanism. The logarithm of the formation constant of the 1?:?1 complex formed was 11.3.  相似文献   

20.
The reactions of the biogenic organic compounds isoprene and 2‐methyl‐3‐buten‐2‐ol (MBO) with ozone have been investigated under controlled conditions for pressure (atmospheric pressure) and temperature (293 ± 2 K), using FTIR spectrometry. CO was added to scavenge hydroxyl radical formation during the ozonolysis experiments. Reaction rate constants were determined by absolute rate technique, by measuring both ozone and the organic compound concentrations. The measured values were k1 = (1.19 ± 0.09) × 10?17 cm3 molecule?1 s?1 for the reaction between ozone and isoprene and k2 = (8.3 ± 1.0) × 10?18 cm3 molecule?1 s?1 for the reaction between ozone and MBO. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 152–156 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号