首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The first total syntheses of new monoterpene alkaloids (-)-incarvilline, (+)-incarvine C, and (-)-incarvillateine, corresponding to the natural enantiomers, have been accomplished. The strategy for the synthesis of these natural products utilized 6-epi-incarvilline as a common precursor, which was assembled by a three-component coupling reaction using (4S)-4-siloxy-2-cyclopenten-1-one to construct an appropriately trisubstituted cyclopentanone, followed by ring closure to the cis-perhydro-2-pyrindine skeleton by means of a reductive Heck-type reaction. Furthermore, topochemically controlled [2 + 2] photodimerization of cinnamic acid derivatives in the solid state for the stereospecific construction of a 1,2,3,4-tetrasubstituted cyclobutane ring was also investigated as a means to access (-)-incarvillateine.  相似文献   

2.
Dimeric pyrrole-imidazole alkaloids represent a rich and topologically unique class of marine natural products. This full account will follow the progression of efforts that culminated in the enantioselective total syntheses of the most structurally ornate members of this family: the axinellamines, the massadines, and palau'amine. A bio-inspired approach capitalizing on the pseudo-symmetry of the members of this class is recounted, delivering a deschloro derivative of the natural product core. Next, the enantioselective synthesis of the chlorocyclopentane core featuring a scalable, catalytic, enantioselective Diels-Alder reaction of a 1-siloxydiene is outlined in detail. Finally, the successful divergent conversion of this core to each of the aforementioned natural products, and the ensuing methodological developments, are described.  相似文献   

3.
The highly diastereoselective conjugate additions of the novel lithium amide reagents lithium (R)-N-(3-chloropropyl)-N-(α-methylbenzyl)amide and lithium (R)-N-(3-chloropropyl)-N-(α-methyl-p-methoxybenzyl)amide to α,β-unsaturated esters were used as the key steps in syntheses of the homalium alkaloids (-)-(S,S)-homaline and (-)-(R,R)-hopromine. The asymmetric synthesis of (-)-(S,S)-homaline was achieved in 8 steps and 18% overall yield, and the asymmetric synthesis of (-)-(R,R)-hopromine was achieved in 9 steps and 23% overall yield, from commercially available starting materials in each case. These syntheses therefore represent by far the most efficient total asymmetric syntheses of these alkaloids reported to date. A sample of the (4'R,4'S)-epimer of hopromine was also produced using this approach, which provided the first unambiguous confirmation of its absolute configuration and therefore that of natural (-)-(R,R)-hopromine.  相似文献   

4.
The pentacyclic marine alkaloids (-)-papuamine (1) and (-)-haliclonadiamine (2) have been prepared by total synthesis. The synthesis began with (-)-8, which was converted into diester 20 by way of bis-mesylate 17, dinitrile 18, and diacid 19. Dieckmann cyclization of 20 provided keto ester 21, which was transformed into acetal 22. After hydrolysis of the acetal, ketone 25 was subjected to reductive amination with 1,3-propanediamine and sodium triacetoxyborohydride to obtain diamines 26 and 27 as a 71:29 mixture of diastereomers, favoring the symmetrical isomer having the papuamine relative configuration. After transformation of the diamines to their t-Boc derivatives, the benzyl ethers were cleaved and the resulting diol was oxidized to dialdehyde 30. Application of the Seyferth procedure for conversion of aldehydes to alkynes gave a mixture of diynes 31 and 32. After removal of the t-Boc protecting groups from 31, diamino diyne 15 was treated with tributylstannane and azoisobutyronitrile to obtain the bis-vinylstannane 34. Treatment of this compound with Pd(II) and Cu(I) in the presence of air produced (-)-papuamine (1). (-)-Haliclonadiamine (2) was obtained from the unsymmetrical isomer, 32. The NMR spectra of the synthetic alkaloids were identical to those of authentic samples of the natural alkaloids.  相似文献   

5.
The total syntheses of beta-carboline alkaloids, (R)-(-)-pyridindolols (1, 5, and 6) are described. The two key steps involved are (1) a thermal electrocyclic reaction of the 3-alkenylindole-2-aldoxime 10 and (2) a thermal cyclization of 3-alkynylindole-2-aldoxime 11 to construct the beta-carboline N-oxides 8, which upon heating with acetic anhydride and sequential treatment with trifluoromethanesulfonic anhydride gave the triflates 18. The Stille coupling reaction of 18 with vinylstannane, followed by cleavage of MOM ether, afforded the 1-ethenyl-3-hydroxymethyl-beta-carboline (7a). Subsequent acetylation of 7a yielded the acetate 7b, which was subjected to the Sharpless asymmetric 1,2-dihydroxylation by AD-mix-beta to produce (R)-(-)-pyridindolol K2 (6). Selective acetylation of 6 was effected by Ac(2)O and collidine to form (R)-(-)-pyridindolol K1 (5). By contrast, hydrolysis of 6 provided (R)-(-)-pyridindolol (1).  相似文献   

6.
A method of palladium-catalyzed asymmetric allylic substitution for synthesizing 2-substituted cyclohexenylamine derivatives was established. Treatment of a 2-silyloxymethylcyclohexenol derivative with ortho-bromo-N-tosylaniline in the presence of Pd(2)dba(3).CHCl(3) and (S)-BINAPO in THF afforded a cyclohexenylamine derivative with 84% ee in 80% yield. The Heck reaction was carried out to produce an indolenine derivative in good yield. Using this method, we synthesized indolenine derivative 7, which was recrystallized from EtOH to give an optically pure compound. From this compound, tetracyclic ketone 13, which should be a useful intermediate for the synthesis of indole alkaloids, could be synthesized. The total syntheses of (-)-dehydrotubifoline, (-)-tubifoline, and (-)-strychnine were achieved from 13. All ring constructions for the syntheses of these natural products were achieved using a palladium catalyst.  相似文献   

7.
As part of a comprehensive strategy to the welwitindolinone alkaloids possessing a bicyclo[4.3.1]decane core, we report herein concise asymmetric total syntheses of (-)-N-methylwelwitindolinone C isothiocyanate (2a), (-)-N-methylwelwitindolinone C isonitrile (2b), and (-)-3-hydroxy-N-methylwelwitindolinone C isothiocyanate (3a) from a common tetracyclic intermediate. The crucial vinyl chloride moiety was installed through electrophilic chlorination of a hydrazone, but only after adjustment of reactivity to circumvent a facile skeletal rearrangement. Selective desulfurization and oxidation of 2a provided access to 2b and 3a, respectively. Notably, this work provides corrected (1)H and (13)C NMR spectral data for 3a.  相似文献   

8.
Three approaches were examined for the synthesis of 3-(hydroxymethyl)pyrrolizidines, a class of compounds that includes the polyhydroxylated pyrrolizidine alkaloids alexine (1), australine (2), and various stereoisomers of thereof. In the first approach, the intramolecular cycloaddition of an azide onto an electron-rich 1, 3-diene bearing a terminal alkoxymethyl substituent (i.e., 21) afforded the dehydropyrrolizidines 22a and 22b, with 22a predominating. A rationale for this stereoselectivity was proposed. Transformation of the major diastereomer 22a into a natural 3-(hydroxymethyl)pyrrolizidine was not possible due to difficulties encountered in transforming the phenyl vinyl sulfide functionality into other useful functional groups. A second approach was examined, wherein the intramolecular cycloaddition of an azide with an optically pure S-t-Bu-substituted diene (i.e., 30) was found to produce the pyrrolizidine 31. In this case, the alkoxymethyl substituent was incorporated into the tether between the azide and the diene, rather than on the diene itself. A key transformation in the synthesis of the diene 30 was the use of the allylic borane R(2)BCH(2)CH=C(TMS)(StBu) for the stereoselective conversion of the D-arabinose-derived azido aldehyde 28 to the E-isomer of 30. The cyclization of 30 to 31 also produced the bicyclic triazene 32, the result of 1,3-dipolar cycloaddition of the azide onto the distal double bond of the diene. Again, difficulties in transformation of the vinyl sulfide functionality of 31 into useful oxygen functionality limited this approach to naturally occurring 3-(hydroxymethyl)pyrrolizidines. A third approach to these compounds was successful. The transformation of L-xylose into the azido epoxy tosylate 46 was accomplished using two Wittig reactions and an epoxidation, in addition to other standard functional group manipulations. Reductive double-cyclization of 46 afforded the pyrrolizidines 47a and 47b, which were debenzylated to afford (+)-australine 2 and (-)-7-epialexine 4, respectively. In the preliminary report of this work, erroneous spectroscopic data in the original literature on the structural assignment of australine led to the conclusion that the synthetic material obtained herein was actually (+)-7-epiaustraline. Recently corrected spectroscopic data have appeared which verify that (+)-australine 2 was indeed synthesized for the first time.  相似文献   

9.
The first enantioselective total syntheses of the beta-carboline alkaloids (-)-isochrysotricine (1) and (-)-isocyclocapitelline (2) are reported which confirm the absolute configuration of these natural products. Key steps are the copper-mediated S(N)2'-substitution of propargyl oxiranes 13/14 and the gold-catalyzed cycloisomerization of alpha-hydroxyallene 15, resulting in a highly efficient center-to-axis-to-center chirality transfer.  相似文献   

10.
Described is a concise, highly stereocontrolled strategy to the Aspidosperma family of indole alkaloids, one that is readily adapted to the asymmetric synthesis of these compounds. The strategy is demonstrated by the total synthesis of (+/-)-tabersonine (rac-1), proceeding through a 12-step sequence. The basis for this approach was provided by a highly regio- and stereoselective [4 + 2] cycloaddition of 2-ethylacrolein with 1-amino-3-siloxydiene developed in our laboratory. Subsequent elaboration of the initial adduct into the hexahydroquinoline DE ring system was accomplished efficiently by a ring-closing olefin metathesis reaction. A novel ortho nitrophenylation of an enol silyl ether with (o-nitrophenyl)phenyliodonium fluoride was developed to achieve an efficient, regioselective introduction of the requisite indole moiety. The final high-yielding conversion of the ABDE tetracycle into pentacyclic target rac-1 relied on intramolecular indole alkylation and regioselective C-carbomethoxylation. Our approach differs strategically from previous routes and contains built-in flexibility necessary to access many other members of the Aspidosperma family of indole alkaloids. The versatility of the synthetic strategy was illustrated through the asymmetric syntheses of the following Aspidosperma alkaloids: (+)-aspidospermidine, (-)-quebrachamine, (-)-dehydroquebrachamine, (+)-tabersonine, and (+)-16-methoxytabersonine. Of these, (+)-tabersonine and (+)-16-methoxytabersonine were synthesized in greater than 1-g quantities and in enantiomerically enriched form ( approximately 95% ee). The pivotal asymmetry-introducing step was a catalyzed enantioselective Diels-Alder reaction, which proceeded to afford the cycloadducts in up to 95% ee. Significantly, the synthetic sequence was easy to execute and required only four purifications over the 12-step synthetic route.  相似文献   

11.
A very short and efficient enantioselective total synthesis of the tricyclic marine alkaloids (-)-lepadiformine (3), (+)-cylindricine C (1c), and (-)-fasicularin (4) has been developed utilizing the formyloxy 1-azaspiro[4.5]decane 5 as a common intermediate. The key strategic element for the synthesis was the formic acid-induced intramolecular conjugate azaspirocyclization, which proved to be a highly efficient and stereoselective way to rapid construction of the 1-azaspirocyclic substructure of these natural products in a single operation. Thus, the common intermediate 5, synthesized in two steps with 70% overall yield starting from the known (S)-N-Boc-2-pyrrolidinone 7 via the conjugate spirocyclization using an acyclic ketoamide 6, was utilized for the concise and stereoselective total synthesis of (-)-lepadiformine (3), which was accomplished in seven steps with 45% overall yield from 5 (31% yield from 7). The developed strategy based on the conjugate spirocyclization was also applied to the stereoselective total synthesis of (+)-cylindricine C (1c), which was achieved in 10 steps from 5 in 18% overall yield (12% yield from 7). Further application of this approach using 5 led to the synthesis of (-)-fasicularin (4), wherein an extremely efficient method for the introduction of the thiocyanato group via an aziridinium intermediate at the last step was developed. Thus, the highly efficient first enantioselective total synthesis of (-)-fasicularin was accomplished in nine steps with an overall yield of 41% from 5 (28% yield from 7).  相似文献   

12.
Propargyl acetates, in the presence of catalytic amounts of late transition-metal salts such as PtCl(2) or AuCl(3), represent synthetic equivalents of alpha-diazoketones. This notion is corroborated by a concise approach to various sesquiterpene natural products starting from readily available substrates. Specifically, (+)-carvomenthone (17) is converted into propargyl acetate (S)-26 by a sequence involving Stille cross-coupling of its kinetic enol triflate 18, regioselective hydroboration/oxidation of the resulting 1,3-diene 19, and addition of an alkynyl cerium reagent to aldehyde 21 thus obtained. Since the latter step was found to be unselective, the configuration of the reacting propargyl acetate was unambiguously set by oxidation followed by diastereoselective transfer hydrogenation by using Noyori's catalyst 25. Compound (S)-26, on treatment with PtCl(2) in toluene, converted exclusively to the tricyclic enol acetate 27, which was saponified to give norcubebone 11 in excellent overall yield. The conversion of this compound into the sesquiterpene alcohol (-)-cubebol (6) was best achieved with MeCeCl(2) as the nucleophile, whereas the formation of the parent hydrocarbon (-)-alpha-cubebene (4) was effected in excellent yield by recourse to iron-catalyzed cross coupling methodology developed in this laboratory. Since norketone 11 has previously been transformed into (-)-beta-cubebene (5) as well as (-)-4-epicubebol 8, our approach constitutes formal total syntheses of these additional natural products as well. Along similar lines, the readily available propargyl acetates 1, 33 and 47 were shown to give access to 2-carene 44, sesquicarene 39, and episesquicarene 51 in excellent overall yields. In this series, however, the cycloisomerization reaction was best achieved with catalytic amounts of AuCl(3) in 1,2-dichloroethane as the solvent. In addition to these preparative results, our data provide some insight into the mechanism of these remarkable skeletal rearrangement reactions. Transformations of this type are likely triggered by initial coordination of the alkyne unit of the substrate to the carbophilic transition-metal cation. Formal attack of the alkene moiety onto the resulting pi-complex engenders the formation of an electrophilic cyclopropyl carbene species which subsequently reacts with the adjacent acetate unit to give the final product. The alternative phasing of events, implying initial attack of the acetate (rather than the alkene moiety) onto the metal-alkyne complex, is inconsistent with the stereochemical data obtained during this total synthesis campaign.  相似文献   

13.
Here we present a general and common catalytic asymmetric strategy for the total and formal synthesis of a broad number of optically active natural products from the corynantheine and ipecac alkaloid families, for example, indolo[2,3-a]- and benzo[a]quinolizidines. Construction of the core alkaloid skeletons with the correct absolute and relative stereochemistry relies on an enantioselective and diastereodivergent one-pot cascade sequence followed by an additional diastereodivergent reaction step. This allows for enantio- and diastereoselective synthesis of three out of four possible epimers of the quinolizidine alkaloids that begin from common and easily accessible starting materials by using a common synthetic route. Focus has been made on excluding protecting groups and limiting isolation and purification of synthetic intermediates. This methodology is applied in the total synthesis of the natural products (-)-dihydrocorynantheol, (-)-hirsutinol, (-)-corynantheol, (-)-protometinol, (-)-dihydrocorynantheal, (-)-corynantheal, (-)-protoemetine, (-)-(15S)-hydroxydihydrocorynantheol, and an array of their nonnatural epimers. The potential of this strategy is also demonstrated in the synthesis of biologically interesting natural product analogues not accessible through synthetic elaboration of alkaloid precursors available from nature, for example, thieno[3,2-a]quinolizidine derivatives. We also report the formal synthesis of (+)-dihydrocorynantheine, (-)-emetine, (-)-cephaeline, (-)-tubulosine, and (-)-deoxytubulosine.  相似文献   

14.
[reaction: see text] The radical cyclization approach to the morphine alkaloids has been applied in an asymmetric synthesis of (-)-dihydrocodeinone. A chiral cyclohexenol (R-32), from the CBS reduction of the enone, is the source of chirality. The first key step, tandem closure in which stereochemistry is controlled by geometric constraints, (-)-15b --> (+)-16, was followed by an unprecedented reductive hydroamination, completing the synthesis of (-)-dihydroisocodeine ((-)-17) in 13 steps from commercially available materials.  相似文献   

15.
[structures: see text] The highly convergent stereocontrolled total synthesis of (-)-vincamajinine (7), (-)-11-methoxy-17-epivincamajine (9), and the oxygen-bridged (+)-dehydrovoachalotine (22) are described. Key steps in the synthesis of 7 and 9 involved the stereospecific enolate-driven palladium-catalyzed cross-coupling reaction, a Tollens reaction, an acid-assisted intramolecular cyclization to form the C(7)-C(17) quaternary center, and two stereospecific reductions. The efficiency of this strategy is illustrated by the completion of the synthesis of 7 and 9 in 16 [from d-(+)-tryptophan methyl ester 17] and 17 (from the Sch?llkopf chiral auxiliary 27) reaction vessels, respectively. This constitutes the first total synthesis of these indole alkaloids and provides the first regiospecific route to 11-methoxy-substituted ajmaline/vincamajine-related alkaloids. The synthesis of 22 required a novel DDQ-mediated cyclization to furnish the C(6)-O(17) bond, executed in stereospecific fashion. Completion of these syntheses illustrates a concise and versatile strategy for the synthesis of vincamajine-related alkaloids, which has also been employed to prepare the related compounds quebrachidine diol (53), vincamajine diol (56), and vincarinol (59).  相似文献   

16.
A new strategy for enantiospecific construction of the Securinega alkaloids has been developed and applied in total syntheses of (+)-14,15-dihydronorsecurinine (8), (-)-norsecurinine (6), and phyllanthine (2). The B-ring and C7 absolute stereochemistry of these biologically active alkaloids originated from trans-4-hydroxy-L-proline (10), which was converted to ketonitrile 13 via a high-yielding eight-step sequence. Treatment of this ketonitrile with SmI2 afforded the 6-azabicyclo[3.2.1]octane B/C-ring system 14, which is a key advanced intermediate for all three synthetic targets. Annulation of the A-ring of (-)-norsecurinine (6) with the required C2 configuration via an N-acyliminium ion alkylation was accomplished using radical-based amide oxidation methodology developed in these laboratories as a key step, providing tricycle 33. Annulation of the D-ring onto alpha-hydroxyketone 33 with the Bestmann ylide 45 at 12 kbar gave (+)-14,15-dihydronorsecurinine (8). In the securinine series, the D-ring was incorporated using an intramolecular Wadsworth-Horner-Emmons olefination of phenylselenylated alpha-hydroxyketone 47. The C14,15 unsaturation was installed late in the synthesis by an oxidative elimination of the selenoxide derived from tetracyclic butenolide 50 to give (-)-norsecurinine (6). The A-ring of phyllanthine (2) was formed from hydroxyketone 14 using a stereoselective Yb(OTf)3-promoted hetero Diels-Alder reaction of the derived imine 34 with Danishefsky's diene, affording adduct 35. Conjugate reduction and stereoselective equatorial ketone reduction of vinylogous amide 35 provided tricyclic intermediate 36, which could then be elaborated in a few steps to stable hydroxyenone 53 via alpha-selenophenylenone intermediate 52. The D-ring was then constructed, again using an intramolecular Wadsworth-Horner-Emmons olefination reaction to give phyllanthine (2).  相似文献   

17.
A novel series of (2-amino)-6-(2-aminoethyl)pyridines were prepared by a convenient Suzuki-Miyaura coupling approach from 2-amino-6-bromopyridines. Benzyl vinylcarbamate was first treated with 9-BBN followed by aqueous NaOH and then the appropriate bromopyridine precursors were added into the mixture. The mixture was finally heated in presence of a palladium catalyst to provide the corresponding products in overall high yields. The procedure is extended to the preparation of related pyrazine and pyrimidine compounds as well as (2-amido)- and (2-alkoxy)-6-(2-aminoethyl)pyridines.  相似文献   

18.
The methyl esters of (L)-phenylalanine and (L)-methionine underwent conjugate additions via their free amino groups to 1-(p-toluenesulfonyl)hexyne, followed by intramolecular acylation of the corresponding enamide anions and tautomerization to afford 2-benzyl-5-n-butyl-3-hydroxy-4-(p-toluenesulfonyl)pyrrole and 5-n-butyl-3-hydroxy-2-(2-methylthioethyl)-4-(p-toluenesulfonyl)pyr role, respectively. The conjugate additions of a series of acyclic and cyclic secondary beta- and gamma-chloroamines to acetylenic sulfones proceeded similarly under mild conditions. The resulting adducts were deprotonated with LDA in THF at -78 degrees C, and the resulting sulfone-stabilized carbanions underwent intramolecular alkylation to afford cyclic enamine sulfones. Thus, acyclic gamma-chloroalkyl-benzylamines afforded the corresponding 2- or 2,6-disubstituted piperidines, while 2-(chloromethyl)pyrrolidines, 2-(2-chloroethyl)pyrrolidines, 2-(chloromethyl)piperidines, and 2-(2-chloroethyl)piperidines produced the corresponding 3-substituted pyrrolizidines, 5- or 3-substituted indolizidines, and 4-substituted quinolizidines, respectively. 8-Methyl-5-substituted indolizidines were also prepared from the appropriate methyl-substituted chloroamine precursor. Enantioselective syntheses were achieved by employing chiral chloroamines derived from amino acids or other enantiopure precursors. Further transformations of several of the products provided concise syntheses of four dendrobatid alkaloids. Thus, reduction of (8aS)-5-n-propyl-6-(p-toluenesulfonyl)-delta5,6-indolizidine with sodium cyanoborohydride in trifluoroacetic acid, followed by reductive desulfonylation, afforded (-)-indolizidine 167B. The corresponding 5-n-hexyl derivative similarly produced (-)-indolizidine 209D, while (-)-(8R, 8aS)-8-methyl-5-n-pentyl-6-(p-toluenesulfonyl)-delta5,6-indo lizidine furnished (-)-indolizidine 209B. Finally, the similar reduction and debenzylation of (-)-(8R,8aS)-5-(2-benzyloxyethyl)-8-methyl-6-(p-toluenesulfo nyl)-delta5,6-indolizidine produced the corresponding 5-hydroxyethyl indolizidine. This was subjected to chlorination of the alcohol group with thionyl chloride and substitution with a higher order allyl cuprate reagent to afford (-)-indolizidine 207A.  相似文献   

19.
The first stereospecific, enantiospecific total synthesis of the ring-A oxygenated sarpagine indole alkaloids (+)-N(a)-methylsarpagine (8), (+)-majvinine (14), and (+)-10-methoxyaffinisine (49), as well as the first total synthesis of the Alstonia bisindole alkaloid macralstonidine (9), has been accomplished. This approach employed the Sch?llkopf chiral auxiliary for the stereospecific construction of the desired d-(+)-tryptophan unit required for the asymmetric Pictet-Spengler reaction. In addition, the strategy was doubly convergent for the enolate-mediated Pd(0) coupling process and the asymmetric Pictet-Spengler reaction can be employed to synthesize both macroline (2) and N(a)-methylsarpagine (8), the coupling of which provides macralstonidine (9). This approach to ring-A substituted alkoxyindole alkaloids should find wide application for the synthesis of other alkaloids for it is stereospecific and either enantiomer can be prepared with ease.  相似文献   

20.
Chiral, non-racemic hexahydro-oxazolo[3,2-a]pyridin-5-ones are strategic starting materials for the asymmetric synthesis of alkaloids, via the stereoselective C-C bond formation at the position a to the nitrogen atom. The stereoselectivity of this key step is mainly driven by the geometry of the fused rings of the oxazolopyridine moiety. In this work, the synthesis and X-ray structure of trans(3R,2aS)-(-)-3-phenyl-hexahydro-oxazolo[3,2-a]pyridin-5-one is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号