首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microstructure of the normal micelles formed by dimeric surfactants with long spacers, [Br(CH3)2N+(C m H2 m +1)-(CH2) S  -(C m H2 m +1)N+(CH3)2Br, m = 10 and s = 8, 10 and 12], has been investigated by small-angle neutron scattering and compared with previously reported results for micelles of the same dimeric surfactants with shorter spacers (m = 10 and s = 2, 3, 4 and 6). It was found that for dimeric surfactants with long spacers (s = 8 and 10), both micellar growth and variation in shape occur to only a small extent, if at all, compared with dimeric surfactants with short spacers. However, for the dimeric surfactant with the longest spacer, s = 12, the extent of micellar growth and shape variation is also large. These results are due to the differences in conformation of dimeric surfactants with short spacers (s = 2–6) compared with that of the surfactants with long spacers (s = 8–12). Received: 15 June 1998 Accepted: 22 July 1998  相似文献   

2.
The microstructure of the micelles formed in aqueous solution by gemini surfactants with aromatic spacers, [Br(CH3)2N+(C m H2 m +1)-(Ph)-(C m H2 m +1)N+(CH3)2Br, m=8 and Ph = o-, m- or p-phenylenedimethylene] has been examined by small-angle neutron scattering. Aggregation of the gemini surfactants with an o-phenylenedimethylene spacer brings about formation of premicelles and small micelles at concentrations below the second critical micelle concentration, while above this concentration marked micellar growth and variation in shape occurs. It is suggested that the minimum aggregate formed at this critical micelle concentration may be the trimer or tetramer and that this result supports the mechanism of “gemini → submicelle → assembly” for micellar growth. Received: 8 September 1998 Accepted in revised form: 27 November 1998  相似文献   

3.
Ti/IrO2(x) + MnO2(1-x) anodes have been fabricated by thermal decomposition of a mixed H2IrCl6 and Mn(NO3)2 hydrosolvent. Cyclic voltammetry (CV) and polarization curve have been utilized to investigate the electrochemical behavior and electrocatalytic activity of Ti/IrO2(x) + MnO2(1-x) anodes in 0.5 M NaCl solution (pH = 2). Ti/IrO2+MnO2 anode with 70 mol% IrO2 content has the maximum value of q*, indicating that Ti/IrO2(0.7) + MnO2(0.3) anode has the most excellent electrocatalytic activity for the synchronal evolution of Cl2 and O2 in dilute NaCl solution. Tafel lines displayed two distinct linear regions with one of the slope close to 62 mV dec−1 in the low potential region and the other close to 295 mV dec−1 in the high potential region. Electrochemical impedance spectroscopic is employed to investigate the impedance behavior of Ti/IrO2(x) + MnO2(1-x) anodes in 0.5 M NaCl solution. It is observed that as the R ct, R s and R f values for Ti/IrO2(0.7) + MnO2(0.3) anode become smaller, electrocatalytic activity of Ti/IrO2(0.7) + MnO2(0.3) anode becomes better than that of other Ti/IrO2 + MnO2 anodes with different compositions. Ti/IrO2(0.7) + MnO2(0.3) anode fabricated at 400 °C has been observed to possess the highest service life of 225 h, whereas the accelerated life test is carried out under the anodic current of 2 A cm−2 at the temperature of 50 °C in 0.5 M NaCl solution (pH = 2).  相似文献   

4.
The behavior of the phosphine-phosphine sulfide complexes of silver, [Ph2P(S)(CH2) n PPh2] m ·AgNO3 (n=2 or 4;m=1 or 2), in pyridine was studied. Dissolution of the 1:1 complexes in pyridine leads to destruction of their dimeric structures Ag2[Ph2P(S)(CH2) n PPh2]2(NO3)2 (A) to form the complexes Agpy +−P(Ph2)(CH2) n Ph2P=S and Agpy +−S=PPh2(CH2) n PPh2. The solid complexes isolated from pyridine restore dimeric structure A. According to the data of X-ray diffraction analysis, the 1:2 complex isolated from pyridine has the structure [S=P(Ph2)(CH2)2(Ph2)P−(NO3)Ag(Py)−P(Ph2) (CH2)2(Ph2)P=S]Py. According to the data of IR spectroscopy, dissolution of this complex in chloroform leads to the formation of the dimeric structure Ag2Ph2P(S)(CH2)2PPh2]4(NO3)2. Deceased. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1751–1758, September, 1998.  相似文献   

5.
Binary excess molar volumes, V m E, have been evaluated from density measurements, using a vibrating tube densimeter over the entire composition range for binary liquid mixtures of ionic liquids 1-ethyl-3-methyl-imidazolium diethyleneglycol monomethylethersulphate [EMIM]+[CH3(OCH2CH2)2OSO3] or 1-butyl-3-methyl-imidazolium diethyleneglycol monomethylethersulphate [BMIM]+[CH3(OCH2CH2)2OSO3] or 1-methyl-3-octyl-imidazolium diethyleneglycol monomethylethersulphate [MOIM]+[CH3(OCH2CH2)2OSO3]+methanol and [EMIM]+[CH3(OCH2CH2)2OSO3]+water at 298.15, 303.15 and 313.15 K. The V m E values were found to be negative for all systems studied. The V m E results are explained in terms of intermolecular interactions and packing effects. The experimental data were fitted by the Redlich-Kister polynomial.  相似文献   

6.
Effect of dicationic gemini surfactants C16H33(CH3)2N+-(CH2) s -N+(CH3)2C16H33, 2Br (where s = 4, 5, 6) on the reaction of ninhydrin with L-isoleucine has been investigated spectrophotometrically as a function of [gemini], [L-isoleucine], [ninhydrin], and pH. The reaction follows first- and fractional-order kinetics, respectively, in [L-isoleucine] and [ninhydrin]. The gemini surfactant micellar media are found more effective for the reaction than their conventional monomeric counterpart CTAB. Furthermore, whereas typical rate constant (k ψ) increase and leveling-off regions are observed with CTAB and geminis, the latter produce a third region of increasing k ψ at concentrations ≥ 60 cmc’s. 1H NMR studies reveal that this unusual third-region effect of the geminis is due to changes in their micellar morphologies. Quantitative kinetic analysis has been performed on the basis of modified pseudo-phase model.  相似文献   

7.
Based on the continuum dielectric model, this work has established the relationship between the solvent reorganization energy of electron transfer (ET) and the equilibrium solvation free energy. The dipole-reaction field interaction model has been proposed to describe the electrostatic solute-solvent interaction. The self-consistent reaction field (SCRF) approach has been applied to the calculation of the solvent reorganization energy in self-exchange reactions. A series of redox couples, O2/O 2, NO/NO+, O3/O 3, N3/N 3, NO2/NO+ 2, CO2/CO 2, SO2/SO 2, and ClO2/ClO 2, as well as (CH2)2C-(-CH2-) n -C(CH2)2 (n=1 ∼ 3) model systems have been investigated using ab initio calculation. For these ET systems, solvent reorganization energies have been estimated. Comparisons between our single-sphere approximation and the Marcus two-sphere model have also been made. For the inner reorganization energies of inorganic redox couples, errors are found not larger than 15% when comparing our SCRF results with those obtained from the experimental estimation. While for the (CH2)2C–(–CH2–) n –C(CH2)2 (n=1 ∼ 3) systems, the results reveal that the solvent reorganization energy strongly depends on the bridge length due to the variation of the dipole moment of the ionic solute, and that solvent reorganization energies for different systems lead to slightly different two-sphere radii. Received: 19 April 2000 / Accepted: 6 July 2000 / Published online: 27 September 2000  相似文献   

8.
Dimeric or gemini surfactants are novel surfactants that are finding a great deal of discussion in the academic and industrial arena. They consist of two hydrophobic chains and two polar head groups covalently linked by a spacer. Data on critical micelle concentration (cmc) and degree of counterion dissociation (α) are reported on bis-cationic C16H33N+(CH3)2–(CH2)s–N+(CH3)2C16H33, 2Br, referred to as 16-s-16, for spacer lengths s=4, 5, 6 in aqueous and in polar nonaqueous (1-propanol, 2-methoxyethanol or methyl cellosolve, dimethyl sulfoxide, acetonitrile)-water-mixed solvents. The behavior is compared with conventional monomeric surfactant cetyltrimethylammonium bromide (CTAB). Thermodynamic parameters are obtained from the temperature dependence of the cmc values. It is observed that micellization tendency of the surfactants decreases in the presence of polar nonaqueous solvents. However, detailed studies with dimethylsulfoxide (DMSO) show that the geminis nearly outclass the micellization-arresting property of this solvent. Also, within geminis, higher spacer length is found suitable for showing micellization even with high DMSO content (50% v/v). The implications of these results of gemini micellization may be useful in micellar catalysis in polar nonaqueous solvents.  相似文献   

9.
Summary.  Two novel Er-Cr ion-pair complexes ([Er(DMA)3(H2O)4][Cr(CN)6] and [Er(MPL)4(H2O)3][Cr(CN)6]·2H2O; DMA = dimethylacetamide, MPL = 1-methyl-2-pyrrolidinone) have been synthesized. [Er(DMA)3(H2O)4][Cr(CN)6] crystallizes in the monoclinic system (space group P c ) with a = 9.789(2), b = 11.263(2), c = 13.997(3)?, β = 105.66(3)°, V = 1485.9(5)?3, Z = 2; [Er(MPL)4(H2O)3][Cr(CN)6]·2H2O crystallizes in the monoclinic system (space group P21) with a = 9.447(2), b = 13.881(3), c = 14.673(3)?, β = 101.85(3), V = 1883.1(7)?3, Z = 2. X-Ray crystal diffraction analyses reveal that the two complexes form a hydrogen bonding network structure through the CN group and H2O molecules. Variable temperature susceptibilities for the two complexes indicate that weak antiferromagnetic interactions exist between cation and anion pairs through this hydrogen bonding network.  相似文献   

10.
On the basis of large-scale coupled cluster calculations including connectedz triple substitutions in a perturbative way, the geometrical parameters of the D 3 h saddle point of the Walden inversion reaction Cl + CH3Cl′→ ClCH3 + Cl′ are predicted to be R s (C—Cl) = 2.301 ? and r s (C—H) = 1.069 ?. The barrier height with respect to the reactants is recommended to be 11.5 ± 1.0 kJ mol−1. Connected triple substitutions lower the barrier height by almost a factor of 2, but have very little influence on the geometric structure of the saddle point. Received: 26 June 1998 / Accepted: 15 July 1998 / Published online: 28 September 1998  相似文献   

11.
Summary.  Palladium(II) complexes of the general formula PdCl2 (PR3)2 with PR3 = { P(OPh)3}, P(O-4-MeC6H4)3, P(O-2-MeC6H4)3, and PPh2(OBu) were reduced by NEt3 in chloroform or benzene to Pd(0) complexes Pd(PR3)4 and Pd(PR3)x(NEt3) 4−x . The same reaction performed in the presence of air gave CH3CHO or CH3CH2CHO when NPr3 was used instead of NEt3. Pd(P(OPh)3)4 reacted with benzyl bromide affording the oxidative addition product cis-PdBr(CH2Ph)(P(OPh)3)2. The reaction of PdCl2(P(OPh)3)2 with benzyl bromide was observed only in the presence of NEt3, and a dimeric complex of [PdBr(CH2Ph)(P(OPh)3)]2 was identified as the reaction product. Both benzyl complexes reacted fast with CO (1 atm) to form acyl complexes exhibiting ν(CO) bands at 1709 and 1650 cm−1.  相似文献   

12.
 Palladium(II) complexes of the general formula PdCl2 (PR3)2 with PR3 = { P(OPh)3}, P(O-4-MeC6H4)3, P(O-2-MeC6H4)3, and PPh2(OBu) were reduced by NEt3 in chloroform or benzene to Pd(0) complexes Pd(PR3)4 and Pd(PR3)x(NEt3) 4−x . The same reaction performed in the presence of air gave CH3CHO or CH3CH2CHO when NPr3 was used instead of NEt3. Pd(P(OPh)3)4 reacted with benzyl bromide affording the oxidative addition product cis-PdBr(CH2Ph)(P(OPh)3)2. The reaction of PdCl2(P(OPh)3)2 with benzyl bromide was observed only in the presence of NEt3, and a dimeric complex of [PdBr(CH2Ph)(P(OPh)3)]2 was identified as the reaction product. Both benzyl complexes reacted fast with CO (1 atm) to form acyl complexes exhibiting ν(CO) bands at 1709 and 1650 cm−1.  相似文献   

13.
High-resolution energy spectra of electrons released in Penning ionization collisions of metastable rare gas atoms Rg*(ns) (Rg = He, Ne, Ar, Kr, Xe) with several open-shell and closed-shell atoms are analyzed to determine the well depth of the potential energy curve which describes the respective autoionizing collision complex. We thereby elucidate trends in the chemical interaction of Rg* with closed-shell target atoms A(ns 2) and establish a basis for detailed comparison with the respective interactions involving open-shell, ground state alkali atoms A(ns). From electron energy spectra due to␣associative ionization (RgH+ formation) in Rg* + H(1s) collisions, we determine binding energies for the RgH+(1Σ) ground state potential (Rg = Ne, Ar, Kr, Xe) with uncertainties around 0.03 eV. Received: 30 June 1998 / Accepted: 5 August 1998 / Published online: 28 October 1998  相似文献   

14.
The formation constants of dioxouranium(VI)-2,2′-oxydiacetic acid (diglycolic acid, ODA) and 3,6,9-trioxaundecanedioic acid (diethylenetrioxydiacetic acid, TODA) complexes were determined in NaCl (0.1≤I≤1.0 mol⋅L−1) and KNO3 (I=0.1 mol⋅L−1) aqueous solutions at T=298.15 K by ISE-[H+] glass electrode potentiometry and visible spectrophotometry. Quite different speciation models were obtained for the systems investigated, namely: ML0, MLOH, ML22−, M2L2(OH), and M2L2(OH)22−, for the dioxouranium(VI)–ODA system, and ML0, MLH+, and MLOH for the dioxouranium(VI)–TODA system (M=UO22+ and L = ODA or TODA), respectively. The dependence on ionic strength of the protonation constants of ODA and TODA and of both metal-ligand complexes was investigated using the SIT (Specific Ion Interaction Theory) approach. Formation constants at infinite dilution are [for the generic equilibrium pUO22++q(L2−)+rH+ (UO22+) p (L) q H r (2p−2q+r);β pqr ]: log 10 β 110=6.146, log 10 β 11−1=0.196, log 10 β 120=8.360, log 10 β 22−1=8.966, log 10 β 22−2=3.529, for the dioxouranium(VI)–ODA system and log β 110=3.636, log 10 β 111=6.650, log 10 β 11−1=−1.242 for dioxouranium(VI)–TODA system. The influence of etheric oxygen(s) on the interaction towards the metal ion was discussed, and this effect was quantified by means of a sigmoid Boltzman type equation that allows definition of a quantitative parameter (pL 50) that expresses the sequestering capacity of ODA and TODA towards UO22+; a comparison with other dicarboxylates was made. A visible absorption spectrum for each complex reaching a significant percentage of formation in solution (KNO3 medium) has been calculated to better characterize the compounds found by pH-metric refinement.  相似文献   

15.
Summary.  The complexes RuTp(cod)X (X = Br (2), I (3), CN (4)) have been obtained by the reaction of RuTp(cod)Cl (1) with KX in boiling MeOH in high yields. The cationic complexes [RuTp(cod)(py)]+ (5), [RuTp(cod)(dmso)]+ (6), and [RuTp(cod)(CH3CN)]+ (7) were prepared as the CF3SO3 salts by reacting 1 with 1 equivalent of AgCF3SO3 in the presence of the respective co-ligand in CH2Cl2. The crystal structures of 1, 3, 4, 5, 6, and 7 are reported. Structural features are discussed in conjunction with 1H, 13C, and 15N NMR spectroscopic data revealing a linear correlation of 15N chemical shifts and Ru-N (trans to X(L)) bond distances. Received August 31, 2000. Accepted (revised) October 23, 2000  相似文献   

16.
Summary Pulsed laser photolysis coupled with time-resolved UV-absorption monitoring of CH3COradicals was applied to obtain the rate constant, k1, for the reaction CH3CO+ HBr → CH3C(O)H + Br (1); k1(298 K) = (3.59 ± 0.23 (2σ))x10-12cm3molecule-1s-1. Utilization of k1in a third law procedure has provided the standard enthalpy of formation value ofDfH°298(CH3CO) = -10.04 ± 1.10 (2σ) kJ mol-1in excellent agreement with a very recent IUPAC recommendation.  相似文献   

17.
Summary.  Small plate-like single crystals of MgAlF5(H2O)2 have been obtained during hydrothermal treatment (270°C) of microcrystalline material prepared by precipitation of stoichiometric solutions of Al2(SO4)3 ·  18H2O and Mg(NO3)2 · 6H2O with diluted hydrofluoric acid. The crystal structure of MgAlF5(H2O)2 has been refined from single crystal data (Imma (# 74), Z = 4, a = 7.0637(7), b = 10.1308(10), c = 6.7745(7) ?, 398 structure factors, 33 parameters, R(F2 > σ(F 2)) = 0.0245, wR(F2 all) = 0.0525). Main features of the inverse weberite type structure are infinite chains of trans-bridged [AlF6] octahedra which are connected via common fluorine atoms by isolated [MgF4(H2O)2] octahedra. MgAlF5(H2O)2 dehydrates at temperatures above 300°C to give MgAlF5. XRPD analysis of this phase has revealed isotypism with FeAlF5. The crystal structure of MgAlF5 (Immm (# 71), Z = 2, a = 7.268(1), b = 6.123(2), c = 3.543(1) ?) is built of infinite chains of edge-sharing [MgF6] octahedra and chains of corner-sharing [AlF6] octahedra along [001]. Upon further heating to temperatures above 500°C, MgAlF5 decomposes to MgF2 and α − AlF3. Received January 15, 2001. Accepted February 12, 2001  相似文献   

18.
 Small plate-like single crystals of MgAlF5(H2O)2 have been obtained during hydrothermal treatment (270°C) of microcrystalline material prepared by precipitation of stoichiometric solutions of Al2(SO4)3 ·  18H2O and Mg(NO3)2 · 6H2O with diluted hydrofluoric acid. The crystal structure of MgAlF5(H2O)2 has been refined from single crystal data (Imma (# 74), Z = 4, a = 7.0637(7), b = 10.1308(10), c = 6.7745(7) ?, 398 structure factors, 33 parameters, R(F2 > σ(F 2)) = 0.0245, wR(F2 all) = 0.0525). Main features of the inverse weberite type structure are infinite chains of trans-bridged [AlF6] octahedra which are connected via common fluorine atoms by isolated [MgF4(H2O)2] octahedra. MgAlF5(H2O)2 dehydrates at temperatures above 300°C to give MgAlF5. XRPD analysis of this phase has revealed isotypism with FeAlF5. The crystal structure of MgAlF5 (Immm (# 71), Z = 2, a = 7.268(1), b = 6.123(2), c = 3.543(1) ?) is built of infinite chains of edge-sharing [MgF6] octahedra and chains of corner-sharing [AlF6] octahedra along [001]. Upon further heating to temperatures above 500°C, MgAlF5 decomposes to MgF2 and α − AlF3.  相似文献   

19.
The two complexes, [Ln(Ala)2(Im)(H2O)](ClO4)3 (Ln=Pr, Gd), were synthesized and characterized. Using a solution-reaction isoperibol calorimeter, standard enthalpies of reaction of two reactions: LnCl3⋅6H2O(s)+2Ala(s)+Im(s)+3NaClO4(s)=[Ln(Ala)2(Im)(H2O)](ClO4)3(s)+3NaCl(s)+5H2O(l) (Ln=Pr, Gd), at T=298.15 K, were determined to be (39.26±0.10) and (5.33±0.12) kJ mol–1 , respectively. Standard enthalpies of formation of the two complexes at T=298.15 K, ΔfHΘm {[Ln(Ala)2(Im)(H2O)](ClO4)3(s)} (Ln=Pr, Gd), were calculated as –(2424.2±3.3) and –(2443.4±3.3) kJ mol–1 , respectively.  相似文献   

20.
A number of configurations of NLi n Na2 (n = 1–4) species were optimized using the B3LYP–density functional theory method; the 6-31G* basis set was used in this calculation. In order to study all possible dissociation energies, some related species such as NLi2Na, NLi n (n = 1–4), Li n (n = 1, 2) and Na n (n = 1, 2) were also considered. Optimizations of these species were followed by fundamental frequency calculations at the same level. Global minima of these species were shown to adopt C 2 v (NLi4Na2, NLi2Na2), D 3 h (NLi3Na2) and C s (NLiNa2 and NLi2Na) configurations. All possible dissociation energies were obtained. Received: 30 November 1998 / Accepted: 15 October 1999 / Published online: 14 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号