首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Completions of partial elliptic matrices are studied. Given an undirected graph G, it is shown that every partial elliptic matrix with graph G can be completed to an elliptic matrix if and only if the maximal cliques of G are pairwise disjoint. Further, given a partial elliptic matrix A with undirected graph G, it is proved that if G is chordal and each specified principal submatrix defined by a pair of intersecting maximal cliques is nonsingular, then A can be completed to an elliptic matrix. Conversely, if G is nonchordal or if the regularity condition is relaxed, it is shown that there exist partial elliptic matrices which are not completable to an elliptic matrix. In the process we obtain several results concerning chordal graphs that may be of independent interest.  相似文献   

2.
In [R. Grone, C.R. Johnson, E. Sa, H. Wolkowicz, Positive definite completions of partial Hermitian matrices, Linear Algebra Appl. 58 (1984) 109-124] the positive definite (semi-) completion problem in which the underlying graph is chordal was solved. For the positive definite case, the process was constructive and the completion was obtained by completing the partial matrix an entry at a time. For the positive semidefinite case, they obtained completions of a particular sequence of partial positive definite matrices with the same underlying graph and noted that there is a convergent subsequence of these completions that converges to the desired completion. Here, in the chordal case, we provide a constructive solution, based entirely on matrix/graph theoretic methods, to the positive (semi-)definite completion problem. Our solution associates a specific tree (called the “clique tree” [C.R. Johnson, M. Lundquist, Matrices with chordal inverse zero-patterns, Linear and Multilinear Algebra 36 (1993) 1-17]) with the (chordal) graph of the given partial positive (semi-)definite matrix. This tree structure allows us to complete the matrix a “block at a time” as opposed to an “entry at a time” (as in Grone et al. (1984) for the positive definite case). In Grone et al. (1984), using complex analytic techniques, the completion for the positive definite case was shown to be the unique determinant maximizing completion and was shown to be the unique completion that has zeros in its inverse in the positions corresponding to the unspecified entries of the partial matrix. Here, we show the same using only matrix/graph theoretic tools.  相似文献   

3.
Asymptotic behavior of the singular value decomposition (SVD) of blown up matrices and normalized blown up contingency tables exposed to random noise is investigated. It is proved that such an m×n random matrix almost surely has a constant number of large singular values (of order ), while the rest of the singular values are of order as m,n. We prove almost sure properties for the corresponding isotropic subspaces and for noisy correspondence matrices. An algorithm, applicable to two-way classification of microarrays, is also given that finds the underlying block structure.  相似文献   

4.
The question of which partial Hermitian matrices (some entries specified, some free) may be completed to positive definite matrices is addressed. It is shown that if the diagonal entries are specified and principal minors, composed of specified entries, are positive, then, if the undirected graph of the specified entries is chordal, a positive definite completion necessarily exists. Furthermore, if this graph is not chordal, then examples exist without positive definite completions. In case a positive definite completion exists, there is a unique matrix, in the class of all positive definite completions, whose determinant is maximal, and this matrix is the unique one whose inverse has zeros in those positions corresponding to unspecified entries in the original partial Hermitian matrix. Additional observations regarding positive definite completions are made.  相似文献   

5.
A real matrix is called k-subtotally positive if the determinants of all its submatrices of order at most k are positive. We show that for an m × n matrix, only mn inequalities determine such class for every k, 1 ? k ? min(m,n). Spectral properties of square k-subtotally positive matrices are studied. Finally, completion problems for 2-subtotally positive matrices and their additive counterpart, the anti-Monge matrices, are investigated. Since totally positive matrices are 2-subtotally positive as well, the presented necessary conditions for this completion problem are also necessary conditions for totally positive matrices.  相似文献   

6.
Let Y be an n×p multivariate normal random matrix with general covariance ΣY and W be a symmetric matrix. In the present article, the property that a matrix quadratic form YWY is distributed as a difference of two independent (noncentral) Wishart random matrices is called the (noncentral) generalized Laplacianness (GL). Then a set of algebraic results are obtained which will give the necessary and sufficient conditions for the (noncentral) GL of a matrix quadratic form. Further, two extensions of Cochran’s theorem concerning the (noncentral) GL and independence of a family of matrix quadratic forms are developed.  相似文献   

7.
The permanent of a matrix is a linear combination of determinants of block diagonal matrices which are simple functions of the original matrix. To prove this, we first show a more general identity involving α-permanents: for arbitrary complex numbers α and β, we show that the α-permanent of any matrix can be expressed as a linear combination of β-permanents of related matrices. Some other identities for the α-permanent of sums and products of matrices are shown, as well as a relationship between the α-permanent and general immanants. We conclude with some discussion and a conjecture for the computational complexity of the α-permanent, and provide some numerical illustrations.  相似文献   

8.
We study graphs whose adjacency matrices have determinant equal to 1 or −1, and characterize certain subclasses of these graphs. Graphs whose adjacency matrices are totally unimodular are also characterized. For bipartite graphs having a unique perfect matching, we provide a formula for the inverse of the corresponding adjacency matrix, and address the problem of when that inverse is diagonally similar to a nonnegative matrix. Special attention is paid to the case that such a graph is unicyclic.  相似文献   

9.
We show that every minor of an n×n Laplace matrix, i.e., a symmetric matrix whose row- and column sums are 0, can be written in terms of those minors that are obtained by deleting two rows and the corresponding columns. The proof is based on a classical determinant identity due to Sylvester. Furthermore, we show how our result can be applied in the context of electrical networks and spanning tree enumeration.  相似文献   

10.
Various types of LU-factorizations for nonsingular matrices, where L is a lower triangular matrix and U is an upper triangular matrix, are defined and characterized. These types of LU-factorizations are extended to the general m × n case. The more general conditions are considered in the light of the structures of [C.R. Johnson, D.D. Olesky, P. Van den Driessche, Inherited matrix entries: LU factorizations, SIAM J. Matrix Anal. Appl. 10 (1989) 99-104]. Applications to graphs and adjacency matrices are investigated. Conditions for the product of a lower and an upper triangular matrix to be the zero matrix are also obtained.  相似文献   

11.
Brualdi brought to Geršgorin Theory the concept that the digraph G(A) of a matrix A is important in studying whether A is singular. He proved, for example, that if, for every directed cycle of G(A), the product of the diagonal entries exceeds the product of the row sums of the moduli of the off-diagonal entries, then the matrix is nonsingular. We will show how, in polynomial time, that condition can be tested and (if satisfied) produce a diagonal matrix D, with positive diagonal entries, such that AD (where A is any nonnnegative matrix satisfying the conditions) is strictly diagonally dominant (and so, A is nonsingular). The same D works for all matrices satisfying the conditions. Varga raised the question of whether Brualdi’s conditions are sharp. Improving Varga’s results, we show, if G is scwaltcy (strongly connected with at least two cycles), and if the Brualdi conditions do not hold, how to construct (again in polynomial time) a complex matrix whose moduli satisfy the given specifications, but is singular.  相似文献   

12.
We investigate simultaneous solutions of the matrix Sylvester equations AiX-XBi=Ci,i=1,2,…,k, where {A1,…,Ak} and {B1,…,Bk} are k-tuples of commuting matrices of order m×m and p×p, respectively. We show that the matrix Sylvester equations have a unique solution X for every compatible k-tuple of m×p matrices {C1,…,Ck} if and only if the joint spectra σ(A1,…,Ak) and σ(B1,…,Bk) are disjoint. We discuss the connection between the simultaneous solutions of Sylvester equations and related questions about idempotent matrices separating disjoint subsets of the joint spectrum, spectral mapping for the differences of commuting k-tuples, and a characterization of the joint spectrum via simultaneous solutions of systems of linear equations.  相似文献   

13.
The usual assumption in multivariate hypothesis testing is that the sample consists of n independent, identically distributed Gaussian m-vectors. In this paper this assumption is weakened by considering a class of distributions for which the vector observations are not necessarily either Gaussian or independent. This class contains the elliptically symmetric laws with densities of the form f(X(n × m)) = ψ[tr(X ? M)′ (X ? M?1]. For testing the equality of k scale matrices and for the sphericity hypothesis it is shown, by using the structure of the underlying distribution rather than any specific form of the density, that the usual invariant normal-theory tests are exactly robust, for both the null and non-null cases, under this wider class.  相似文献   

14.
A partial matrix over a field F is a matrix whose entries are either elements of F or independent indeterminates. A completion of such a partial matrix is obtained by specifying values from F for the indeterminates. We determine the maximum possible number of indeterminates in a partial m×n matrix whose completions all have rank at least equal to a particular k, and we fully describe those examples in which this maximum is attained. Our main theoretical tool, which is developed in Section 2, is a duality relationship between affine spaces of matrices in which ranks are bounded below and affine spaces of matrices in which the (left or right) nullspaces of elements possess a certain covering property.  相似文献   

15.
It is well known that the determinant of a matrix can only be defined for a square matrix. In this paper, we propose a new definition of the determinant of a rectangular matrix and examine its properties. We apply these properties to squared canonical correlation coefficients, and to squared partial canonical correlation coefficients. The proposed definition of the determinant of a rectangular matrix allows an easy and straightforward decomposition of the likelihood ratio when given sets of variables are partitioned into row block matrices. The last section describes a general theorem on redundancies among variables measured in terms of the likelihood ratio of a partitioned matrix.  相似文献   

16.
Two Hermitian matrices A,BMn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix CMn(C) such that B=CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible inertias of the Hermitian matrices C that carry the congruence. We also give necessary and sufficient conditions for any 2-by-2 nonsingular Hermitian matrices to be Hermitian-congruent. In both of the studied cases, we show that if A and B are real and Hermitian-congruent, then they are congruent by a real symmetric matrix. Finally we note that if A and B are 2-by-2 nonsingular real symmetric matrices having the same sign pattern, then there is always a real symmetric matrix C satisfying B=CAC. Moreover, if both matrices are positive, then C can be picked with arbitrary inertia.  相似文献   

17.
Let G be an undirected graph on n vertices and let S(G) be the set of all real symmetric n×n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. The inverse inertia problem for G asks which inertias can be attained by a matrix in S(G). We give a complete answer to this question for trees in terms of a new family of graph parameters, the maximal disconnection numbers of a graph. We also give a formula for the inertia set of a graph with a cut vertex in terms of inertia sets of proper subgraphs. Finally, we give an example of a graph that is not inertia-balanced, which settles an open problem from the October 2006 AIM Workshop on Spectra of Families of Matrices described by Graphs, Digraphs and Sign Patterns. We also determine some restrictions on the inertia set of any graph.  相似文献   

18.
Let Mm,n(B) be the semimodule of all m×n Boolean matrices where B is the Boolean algebra with two elements. Let k be a positive integer such that 2?k?min(m,n). Let B(m,n,k) denote the subsemimodule of Mm,n(B) spanned by the set of all rank k matrices. We show that if T is a bijective linear mapping on B(m,n,k), then there exist permutation matrices P and Q such that T(A)=PAQ for all AB(m,n,k) or m=n and T(A)=PAtQ for all AB(m,n,k). This result follows from a more general theorem we prove concerning the structure of linear mappings on B(m,n,k) that preserve both the weight of each matrix and rank one matrices of weight k2. Here the weight of a Boolean matrix is the number of its nonzero entries.  相似文献   

19.
For a real, Hermitian, or quaternion normal random matrix Y with mean zero, necessary and sufficient conditions for a quadratic form Q(Y) to have a Wishart-Laplace distribution (the distribution of the difference of two independent central Wishart Wp(mi,Σ) random matrices) are given in terms of a certain Jordan algebra homomorphism ρ. Further, it is shown that {Qk(Y)} is independent Laplace-Wishart if and only if in addition to the aforementioned conditions, the images ρk(Σ+) of the Moore-Penrose inverse Σ+ of Σ are mutually orthogonal: ρk(Σ+)ρ?(Σ+)=0 for k?.  相似文献   

20.
Inference about the difference between two normal mean vectors when the covariance matrices are unknown and arbitrary is considered. Assuming that the incomplete data are of monotone pattern, a pivotal quantity, similar to the Hotelling T2 statistic, is proposed. A satisfactory moment approximation to the distribution of the pivotal quantity is derived. Hypothesis testing and confidence estimation based on the approximate distribution are outlined. The accuracy of the approximation is investigated using Monte Carlo simulation. Monte Carlo studies indicate that the approximate method is very satisfactory even for moderately small samples. The proposed methods are illustrated using an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号