首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on an ultrasensitive fluorescence immunoassay for human chorionic gonadotrophin antigen (hCG). It is based on the use of silica nanoparticles coated with a copolymer (prepared from a fluorene, a phenylenediamine, and divinylbenzene; PF@SiO2) that acts as a fluorescent label for the secondary monoclonal antibody to β-hCG antigen. In parallel, Fe3O4 nanoparticles were coated with polyaniline, and these magnetic particles (Fe3O4@PANI) served as a solid support for the primary monoclonal antibody to β-hCG antigen. The PF@SiO2 exhibited strong fluorescence and good dispersibility in water. A fluorescence sandwich immunoassay was developed that enables hCG concentrations to be determined in the 0.01–100 ng·mL?1 concentration range, with a detection limit of 3 pg·mL?1.
Figure
Fluorescence detection of prepared immune reagent nano-composites using the fluorescence cell  相似文献   

2.
We report on a combination of magnetic solid-phase extraction and spectrophotometric determination of bromate. Cetyltrimethylammonium ion was adsorbed on the surface of phenyl-functionalized silica-coated Fe3O4 nanoparticles (Ph-SiO2@Fe3O4), and these materials served as the sorbent. The effects of surfactant and amount of sorbent, the composition of the desorption solution, the extraction time and temperature were optimized. Under optimized conditions, an enrichment factor of 12 was achieved, and the relative standard deviation is 2.9 % (for n?=?5). The calibration plot covers the 1–50 ng mL?1 range with reasonable linearity (r 2?>?0.998); and the limit of detection is 0.5 ng mL?1. The method is not interfered by ionic compounds commonly found in environmental water samples. It was successfully applied to the determination of bromate in spiked water samples.
Figure
Extraction of bromate ions using surfactant-coated phenyl functionalized Fe3O4 magnetic nanoparticles followed by spectrophotometric detection.  相似文献   

3.
An immunosensor was prepared for the determination of carcinoembryonic antigen (CEA). It is based on the use of multiwalled carbon nanotubes (MWCNTs) along with horseradish peroxidase-labeled antibody. The enzyme was assembled onto MWCNTs templates using the layer-by-layer technique and then conjugated to carcinoembryonic secondary antibodies (Ab2) as the enzyme label. The resulting assembly results in a largely amplified sensitivity. The response is linear in the range of 0.05 to 45?ng?mL-1, with a detection limit of 16.0?pg?mL-1. The immunosensor possesses good stability and good reproducibility.
Figure
A new immunosensor with double-layer enzyme-modified carbon nanotubes as label for sandwich-type tumor markers was proposed in this study  相似文献   

4.
We report on the construction of a label-free electrochemical immunosensor for detecting the core antigen of the hepatitis C virus (HCV core antigen). A glassy carbon electrode (GCE) was modified with a nanocomposite made from gold nanoparticles, zirconia nanoparticles and chitosan, and prepared by in situ reduction. The zirconia nanoparticles were first dispersed in chitosan solution, and then AuNPs were prepared in situ on the ZrO2-chitosan composite. In parallel, a nanocomposite was synthesized from AuNPs, silica nanoparticles and chitosan, and conjugated to a secondary antibody. The properties of the resulting nanocomposites were investigated by UV-visible photometry and transmission electron microscopy, and the stepwise assembly process was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. An sandwich type of immunosensor was developed which displays high sensitivity to the HCV core antigen in the concentration range between 2 and 512?ng?mL?1, with a detection limit of 0.17?ng?mL?1 (at S/N?=?3). This immunosensor provides an alternative approach towards the diagnosis of HCV.
Fig
A sandwich-type immunosensor was constructed for the detection of HCV core Ag. AuNPs/ZrO2-Chits nanocomposites were prepared by in situ reduction method. AuNPs/SiO2-Chits nanocomposite integrated with secondary antibody (Ab2) without labeled HRP. The immunosensor displayed high sensitivity to HCV core antigen with a detection limit of 0.17?ng?mL?1 (S/N?=?3).  相似文献   

5.
Graphene-based magnetic nanoparticles (G-Fe3O4) were prepared and used as an effective adsorbent for the solid-phase extraction of trace quantities of cadmium from water and vegetable samples. The method avoids some of the time-consuming steps associated with traditional solid phase extraction. The excellent sorption property of the G-Fe3O4 system is attributed to π - π stacking interaction and hydrophobic interactions between graphene and the Cd-PAN complex. The effects of pH, the amount of G–Fe3O4, extraction time, type and volume of eluent, desorption time and interfering ions on the extraction efficiency were optimized. The preconcentration factor is 200. Cd(II) was then quantified by flame atomic absorption spectrometry with a detection limit of 0.32 ng mL?1. The relative standard deviation (at 50 ng mL?1; for n?=?10) is 2.45 %. The method has a linear analytical range from 1.1 to 150 ng mL?1, and the recoveries in case of real samples are in the range between 93.1 % and 102.3 %.
Figure
General procedure for magnetic preconcentration of cadmium ions from aqueous solution using graphene-based magnetic nanoparticles  相似文献   

6.
We have prepared and characterized Fe3O4 nanoparticles and their binary mixtures (IL-Fe3O4) with 1-hexyl-3-methylimidazolium bromide as ionic liquid for use in the adsorption of lysozyme (LYS), bovine serum albumin (BSA), and myoglobin (MYO). The optimum operational conditions for the adsorption of proteins (at 0.05–2.0 mg?mL?1) were 4.0 mg?mL?1 of nanoparticles and a contact time of 10 min. The maximum adsorption capacities are 455, 182 and 143 mg for LYS, BSA, and MYO per gram of adsorbent, respectively. The Langmuir model better fits the adsorption isotherms, with adsorption constants of 0.003, 0.015 and 0.008 L?mg?1, in order, for LYS, BSA, MYO. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients. The adsorption processes are endothermic. The proteins can be desorbed from the nanoparticles by using NaCl solution at pH 9.5, and the nanoparticles thus can be recycled.
Figure
Nanoparticles of Fe3O4 as well as its binary mixtures with ionic liquids (IL-Fe3O4) were prepared and used for adsorption of lysozyme, bovine serum albumin and myoglobin. The mean size and the surface morphology of both nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients  相似文献   

7.
Multi-walled carbon nanotubes (MWCNTs) were decorated with magnetite (Fe3O4) nanoparticles and then used to modify a stainless steel electrode. The Fe3O4/MWCNTs composite was characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction patterns. Electrochemical properties of the modified electrode revealed a substantial catalytic activity for the reduction of hydrogen peroxide. The relationship between peak current and the concentration of hydrogen peroxide was linear in the range from 0.06?mmol?L?1 to 0.36?mmol?L?1, and the lowest detectable concentration is 0.01?mmol·L?1 (S/N?=?3). The modified stainless steel electrode displays excellent stability.
Graphical abstract
TEM image of Fe3O4/MWCNTs nanocomposites (left) and SEM image of stainless steel after loading Fe3O4/MWCNTs nanocomposites (right).  相似文献   

8.
We have prepared a glassy carbon electrode modified with poly-2,6-pyridinedicarboxylic acid and with magnetic Fe3O4 nanoparticles. This modification enhances the effective surface area and the electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) in addition to providing positively charged groups for electrostatic assembly of the phosphate group of NADH. The modified electrode responds linearly to NADH in the range from 5?×?10?8 to 2.5?×?10?5?M and gives a lower detection limit of 1?×?10?8?M. It displays satisfactory selectivity and reproducibility. The sensor was applied to rapid screening of plant extracts for their antioxidant properties.
Figure
Poly-2,6-pyridinedicarboxylic acid (PDC) was fabricated by electropolymerizing 2,6-pyridinedicarboxylic acid with cyclic voltammetry (CV) on the glassy carbon electrode (GCE) surface. The magnetic Fe3O4 nanoparticles treated with aminopropyltriethoxysilane (APTS) modified on the PDC/GCE to form APTS-Fe3O4/PDC composite film. The APTS-Fe3O4/PDC film had enhanced the effective electrode surface area and provided positively charged groups for electrostatic assembly of phosphate group of NADH.  相似文献   

9.
A disposable electrochemical myeloperoxidase (MPO) immunosensor was fabricated based on the indium tin oxide electrode modified with a film composed of gold nanoparticles (AuNPs), poly(o-phenylenediamine), multi-walled carbon nanotubes and an ionic liquid. The composite film on the surface of the electrode was prepared by in situ electropolymerization using the ionic liquid as a supporting electrolyte. Negatively charged AuNPs were then adsorbed on the modified electrode via amine-gold affinity and to immobilize MPO antibody. Finally, bovine serum albumin was employed to block possible remaining active sites on the AuNPs. The modification of the electrode was studied by cyclic voltammetry and scanning electron microscopy. The factors affecting the performance of the immunosensor were investigated in detail using the hexacyanoferrate redox system. The sensor exhibited good response to MPO over two linear ranges (from 0.2 to 23.4 and from 23.4 to 300 ng.mL?1), with a detection limit of 0.05 ng.mL?1 (at an S/N of 3).
Figure
A disposable electrochemical immunosensor for myeloperoxidase based on the indium tin oxide electrode modified with an ionic liquid composite film composed of gold nanoparticles, poly(o-phenylenediamine) and carbon nanotubes.  相似文献   

10.
We describe a novel magnetic metal-organic framework (MOF) prepared from dithizone-modified Fe3O4 nanoparticles and a copper-(benzene-1,3,5-tricarboxylate) MOF and its use in the preconcentration of Cd(II), Pb(II), Ni(II), and Zn(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, amount of the magnetic sorbent, and pH value) were selected as the main factors affecting adsorption, while four variables (type, volume and concentration of the eluent; desorption time) were selected for desorption in the optimization study. Following preconcentration and elution, the ions were quantified by FAAS. The limits of detection are 0.12, 0.39, 0.98, and 1.2 ng mL?1 for Cd(II), Zn(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations were <4.5 % for five separate batch determinations of 50 ng mL?1 of Cd(II), Zn(II), Ni(II), and Pb(II) ions. The adsorption capacities (in mg g?1) of this new MOF are 188 for Cd(II), 104 for Pb(II), 98 Ni(II), and 206 for Zn(II). The magnetic MOF nanocomposite has a higher capacity than the Fe3O4/dithizone conjugate. This magnetic MOF nanocomposite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.
Figure
A schematic diagram for synthesis of magnetic MOF-DHz nanocomposite.  相似文献   

11.
Chenyu Li  Ligang Chen  Wei Li 《Mikrochimica acta》2013,180(11-12):1109-1116
We report on a method for the extraction of organophosphorus pesticides (OPPs) from water samples using mixed hemimicelles and magnetic titanium dioxide nanoparticles (Fe3O4@TiO2) modified by cetyltrimethylammonium. Fe3O4@TiO2 nanoparticles were synthesized by a hydrothermal process and then characterized by scanning electron microscopy and Fourier transform IR spectrometry. The effects of the quantity of surfactant, extraction time, desorption solvent, pH value, extraction volume and reuse of the sorbent were optimized with respect to the extraction of OPPs including chlorpyrifos, dimethoate, and trichlorfon. The extraction method was applied to analyze OPPs in environmental water using HPLC along with UV detection. The method has a wide linear range (100–15,000 ng L?1), good linearity (r?>?0.999), and low detection limits (26–30 ng L?1). The enrichment factor is ~1,000. The recoveries (at spiked levels of 100, 1,000 and 10,000 ng L?1) are in the range of 88.5–96.7 %, and the relative standard deviations range from 2.4 % to 8.7 %.
Figure
Schematic illustration of the preparation of CTAB coated Fe3O4@TiO2 and its application as SPE sorbent for enriching OPPs  相似文献   

12.
Feng Pan  Jie Mao  Qiang Chen  Pengbo Wang 《Mikrochimica acta》2013,180(15-16):1471-1477
Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water.
Figure
Functional magnetic Fe3O4@SiO2 core shell nanoparticles were utilized for solid phase extraction of Hg(II) from aqueous solutions, and the extracted Hg(II) was determined by a rhodamine-based fluorescent probe RP with satisfying results.  相似文献   

13.
Spherical Fe3O4 nanoparticles (NPs) were prepared by hydrothermal synthesis and characterized by scanning electron microscopy and X-ray diffraction. A glassy carbon electrode was modified with such NPs to result in a sensor for Pb(II) that is based on the strong inducing adsorption ability of iodide. The electrode gives a pair of well-defined redox peaks for Pb(II) in pH 5.0 buffer containing 10 mM concentrations of potassium iodide, with anodic and cathodic peak potentials at ?487 mV and ?622 mV (vs. Ag/AgCl), respectively. The amperometric response to Pb(II) is linear in the range from 0.10 to 44 nM, and the detection limit is 40 pM at an SNR of 3. The sensor exhibits high selectivity and reproducibility.
Figure
An electrochemical sensor for Pb2+ was fabricated based on the glassy carbon electrode modified with Fe3O4 NPs and the strong inducing adsorption ability of I?. The sensor had excellent stability, high sensitivity, ease of construction and utilization for Pb(II) determination  相似文献   

14.
Fe3O4 nanoparticles were deposited on sheets of graphene oxide (GO) by a precipitation method, and glucose oxidase (GOx) was then immobilized on this material to produce a GOx/Fe3O4/GO magnetic nanocomposite containing crosslinked enzyme clusters. The 3-component composite functions as a binary enzyme that was employed in a photometric method for the determination of glucose and hydrogen peroxide where the GOx/Fe3O4/GO nanoparticles cause the generation of H2O2 which, in turn, oxidize the substrate N,N-diethyl-p-phenylenediamine to form a purple product with an absorption maximum at 550 nm. The absorbance at 550 nm can be correlated to the concentration of glucose and/or hydrogen peroxide. Under optimized conditions, the calibration plot is linear in the 0.5 to 600 μM glucose concentration range, and the detection limit is 0.2 μM. The respective plot for H2O2 ranges from 0.1 to 10 μM, and the detection limit is 0.04 μM. The method was successfully applied to the determination of glucose in human serum samples. The GOx/Fe3O4/GO nanoparticles are reusable.
Figure
A one-step spectrophotometric method for the detection of glucose and/or H2O2 was developed by using GOx immobilized Fe3O4/GO MNPs as a bienzyme system and DPD as a substrate.  相似文献   

15.
We have developed a fast method for sensitive extraction and determination of the metal ions silver(I), gold(III), copper(II) and palladium(II). Fe3O4 magnetic nanoparticles were modified with polythiophene and used for extraction the metal ions without a chelating agent. Following extraction, the ions were determined by flow injection inductively coupled plasma optical emission spectrometry. The influence of sample pH, type and volume of eluent, amount of adsorbent, sample volume and time of adsorption and desorption were optimized. Under the optimum conditions, the calibration plots are linear in the 0.75 to 100 μg L?1 concentration range (R2?>?0.998), limits of detection in the range from 0.2 to 2.0 μg L?1, and enhancement factors in the range from 70 to 129. Precisions, expressed as relative standard deviations, are lower than 4.2 %. The applicability of the method was demonstrated by the successful analysis of tap water, mineral water, and river water.
Figure
In the present work, polythiophene-coated Fe3O4 nanoparticles have been successfully synthesized and were applied as adsorbent for magnetic solid-phase extraction of some precious metal ions.  相似文献   

16.
A sensor for hydrogen peroxide is described that is based on an indium tin oxide electrode modified with Fe3O4 magnetic nanoparticles which act as a mimic for the enzyme peroxidase and greatly improve the analytical performance of the sensor. The amperometric current is linearly related to the concentration of H2O2 in the range from 0.2 mM to 2 mM, the regression equation is y?=?-0.5–1.82x, the correlation coefficient is 0.998 (n?=?3), and the detection limit is 0.01 mM (S/N?=?3). The sensor exhibits favorable selectivity and excellent stability.
Figure
Using the peroxidase mimic property of Fe3O4 magnetic nanoparticles (MNPs), a sensitive electrochemical method with favorable analytical performance for the determination of hydrogen peroxide (H2O2) was developed.  相似文献   

17.
We have modified a glassy carbon electrode (GCE) with a film of poly(3-thiophene boronic acid), gold nanoparticles and graphene, and an antibody (Ab) was immobilized on its surface through the covalent bond formed between the boronic acid group and the glycosyl groups of the Ab. Subgroup J of avian leukosis viruses (ALV-J) were electrochemically determined with the help of this electrode. There is a linear relationship between the electron transfer resistance (R et) and the concentration of ALV-J in the range from 527 to 3,162 TCID50?mL?1 (where TCID50 is the 50?% tissue culture infective dose). The detection limit is 210 TCID50?mL?1 (at an S/N of 3), and the correlation coefficient (R) is 0.9964. The electrochemical immunoassay showed good selectivity, stability and reproducibility.
Figure
Schematic illustration of the stepwise immunosensor fabrication process  相似文献   

18.
Despite the rapid development of nanomaterials and nanotechnology, it is still desirable to develop novel nanoparticle-based techniques which are cost-effective, timesaving, and environment-friendly, and with ease of operation and procedural simplicity, for assay of target analytes. In the work discussed in this paper, the dye fluorescein isothiocyanate (FITC) was conjugated to 1,6-hexanediamine (HDA)-capped iron oxide magnetic nanoparticles (FITC–HDA Fe3O4 MNPs), and the product was characterized. HDA ligands on the surface of Fe3O4 MNPs can bind 2,4,6-trinitrotoluene (TNT) to form TNT anions by acid–base pairing interaction. Formation of TNT anions, and captured TNT substantially affect the emission of FITC on the surface of the Fe3O4 MNPs, resulting in quenching of the fluorescence at 519 nm. A novel FITC–HDA Fe3O4 MNPs-based probe featuring chemosensing and magnetic separation has therefore been constructed. i.e. FITC–HDA Fe3O4 MNPs had a highly selective fluorescence response and enabled magnetic separation of TNT from other nitroaromatic compounds by quenching of the emission of FITC and capture of TNT in aqueous solution. Very good linearity was observed for TNT concentrations in the range 0.05–1.5 μmol?L?1, with a detection limit of 37.2 nmol?L?1 and RSD of 4.7 % (n?=?7). Approximately 12 % of the total amount of TNT was captured. The proposed methods are well-suited to trace detection and capture of TNT in aqueous solution.
Figure
Iron oxide magnetic nanoparticles-based selective fluorescent response and magnetic separation probe for 2,4,6-trinitrotoluene  相似文献   

19.
We report on the modification of a graphene paste electrode with gold nanoparticles (AuNPs) and a Nafion-L-cysteine composite film, and how this electrode can serve as a platform for the construction of a novel electrochemical immunosensor for the detection of hepatitis B surface antigen (HBsAg). To obtain the immunosensor, an antibody against HBsAg was immobilized on the surface of the electrode, and this process was followed by cyclic voltammetry and electrochemical impedance spectroscopy. The peak currents of a hexacyanoferrate redox system decreased on formation of the antibody-antigen complex on the surface of the electrode. Then increased electrochemical response is thought to result from a combination of beneficial effects including the biocompatibility and large surface area of the AuNPs, the high conductivity of the graphene paste electrode, the synergistic effects of composite film, and the increased quantity of HBsAb adsorbed on the electrode surface. The differential pulse voltammetric responses of the hexacyanoferrate redox pair are proportional to the concentration of HBsAg in the range from 0.5–800?ng?mL?1, and the detection limit is 0.1?ng?mL?1 (at an S/N of 3). The immunosensor is sensitive and stable.
Figure
We report on the modification of a graphene paste electrode with gold nanoparticles and a Nafion-L-cysteine composite film, and how this electrode can serve as a platform for the construction of a novel electrochemical immunosensor for the detection of hepatitis B surface antigen. The immunosensor is sensitive and stable.  相似文献   

20.
We report on a new kind of electrochemical immunosensors for simultaneous determination of the biomarkers carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP). Thionine and ferrocene were applied as distinguishable electrochemical tags (and mediators) which were covalently conjugated on anti-AFP and anti-CEA antibodies, respectively, via carboxy groups. The resulting conjugates were co-immobilized on a glassy carbon electrode functionalized with gold nanoparticles. Finally, horseradish peroxidase (HRP) was immobilized onto the modified electrode. Labeled thionine and ferrocene, respectively, act as distinguishable tags for simultaneous determination of AFP and CEA due to the difference in the location of their voltammetric peaks. With a one-step immunoassay format, the analytes in the sample produced transparent immunoaffinity reaction with the corresponding antibodies on the electrode. Once the immunocomplex is formed, it partially inhibits the active center of the immobilized HRP, and this decreased the activity of HRP in terms of reduction of hydrogen peroxide. This immunosensor enables the simultaneous determination of AFP and CEA in a single run and within the same dynamic range (0.01–50?ng?mL?1) and the same lower detection limit (0.01?ng?mL?1). The reproducibility and stability of the immunosensors are acceptable. The dual immunosensor was applied to evaluate several specimens, and the assay results are in acceptable agreement with clinical data.
Figure
This contribution devises a novel multiplexed electrochemical immunoassay for simultaneous detection of alpha-fetoprotein and carcinoembryonic antigen by using thionine and ferrocene as distinguishable signal tags on a one-spot immunosensor. The assay was performed by using one-step immunoreaction between the immobilized antibodies and the analytes. Although the linear range is relatively narrow, it completely meets the requirement of clinical diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号