首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
The main terms of the asymptotic form of the solution of the contact problem of the compression without friction of an elastic body and a punch initially in point contact are constructed by the method of matched asymptotic expansions using an improved matching procedure. The condition of unilateral contact is formulated taking account of tangential displacements on the contact surface. An asymptotic solution of the problem for the boundary layer is constructed by the complex potential method. An asymptotic model is constructed, extending the Hertz theory to the case where the surfaces of the punch and elastic body in the vicinity of the contact area are approximated by paraboloids of revolution. The problem of determining the convergence of the contacting bodies from the magnitude of the compressive force is reduced to the problem of calculating the so-called coefficient of local compliance, which is an integral characteristic of the geometry of the elastic body and its fixing conditions.  相似文献   

2.
We consider the variational free boundary problem describing the contact of an elastic plate with a thin elastic obstacle. The contact domain is unknown a priori and should be determined. The problem is described by a variational inequality for a fourth-order operator. The constraint on the displacement is given on a set of dimension less than that of the solution domain. We find the boundary conditions on the set of the possible contact and their exact statement. We justify the mixed statement of the problem and analyze the limit cases corresponding to the unbounded increase of the elasticity coefficients of the contacting bodies.  相似文献   

3.
Numerous laboratory experiments indicate that the use of a layer or a coating material attached to the conventional steel body reduce the magnitude of contact stress. Therefore in this paper we solve numerically the wheel–rail contact problem with friction and wear assuming the existence of a small elastic layer on the rail surface. Material properties of this layer are changing with its depth. The friction between the bodies is governed by Coulomb law. In contact zone Archard's law of wear is assumed. We take special features of this rolling contact problem and use so-called quasistatic approach to solve this contact problem. Finite element method is used as a discretization method. The numerical results including the distribution of normal stress along the contact boundary are provided and discussed. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Research on variational methods for solving problems on the contact of solid deformable bodies is reviewed and trends in the development of these researches at the present time are analysed. The Signorini problem and it generalizations, numerical methods, different models of friction, investigations into the problem of the existence and uniqueness of a solution, the problem of rolling motion, the problem of describing the boundary conditions, inelastic materials and problems of contact dynamics and electro-elastic contact are considered. The analysis shows that research on the problem of the contact of deformable bodies is being conducted over a broad front in different areas and the results are being applied in different areas of modern engineering and technology.  相似文献   

5.
A problem of impressing coaxial stamps of circular cross section into the upper and lower surface of a homogeneous elastic layer is studied. The bases of the stamps have axial symmetry. The parts of the layer surfaces lying oustide the contact zone are stress-free, there is no friction or coupling between the layer and the stamps. A system of two integral equations with two unknown functions is obtained, and provides a solution of the problem. The method of separating the singularities provides the way of reducing this system to the Fredholm equations of second kind. An approximate solution of the equations is obtained for the case of flat stamps under the assumptions that the two parameters entering the system are sufficiently small.

Problems of a layer with various boundary conditions were formulated and solved in many papers and books, e.g. [1, 2]. However, to the best of the author's knowledge, in all these problems the conditions at the boundary were assumed different only on one side of the layer; in the present problem the boundary conditions are mixed at both sides of the layer, and this results in a system of two integral equations.  相似文献   


6.
A. Lotfi  B. Kiss 《PAMM》2003,2(1):242-243
The bilateral or unilateral contact problem with Coulomb friction between two elastic bodies is considered [1]. An algorithm is introduced to solve the resulting finite element system by a non‐overlapping domain decomposition method. The global problem is transformed to a smaller problem on the contact surface. The solution is obtained by using a successive approximation method, in each step of this algorithm we solve two intermediate problems the first with prescribed tangential pressure and the second with prescribed normal pressure.  相似文献   

7.
An analytic solution is obtained for the contact problem for a stiff thermally insulated plate and an elastic heat-conducting layer, subject to the conditions of wear and frictional heating, when the contacting bodies are not drawn nearer. The evolution of the contact pressure, the temperature and the wear are traced. Conditions for the occurrence of thermoelastic instability are established. The conditions under which the wear model considered is applicable are given.  相似文献   

8.
A. Lotfi  B. Kiss 《PAMM》2002,1(1):157-158
The bilateral or unilateral contact problem with Coulomb friction between two elastic bodies is considered [1]. An algorithm is introduced to solve the resulting finite element system by a non‐overlapping domain decomposition method. The global problem is transformed to a smaller problem on the contact surface. The solution is obtained by using a successive approximation method, in each step of this algorithm we solve two intermediate problems the first with prescribed tangential pressure and the second with prescribed normal pressure.  相似文献   

9.
In this article a detailed analytical formulation of the unilateral contact boundary conditions with Coulomb's law of dry friction is first attempted and the quasi-static contact problem between 3-D elastic bodies is studied thereafter. Discretizing the bodies by the Finite Element Method, introducing fictitious contact bonds and using the concept of the equivalent structural system, an incremental Nonlinear Complementarity Problem is finally formulated. Then, using additional simplifying assumptions, this problem can be transformed into an incremental Linear Complementarity Problem.  相似文献   

10.
The three-dimensional contact problem for an elastic body of arbitrary geometry with a single plane face, into which a punch in the shape of an elliptic paraboloid is indented, is considered. The curvilinear boundary of the body is partially clamped, and the remaining boundary (outside the contact region) is stress-free. It is assumed that the dimensions of the contact area are small compared with the characteristic dimension of the body. Using the method of matched asymptotic expansions a model problem of unilateral contact without friction is derived for the boundary layer, which is solved using the apparatus of Hertz's theory. Asymptotic models of the contact interaction of different degrees of accuracy are constructed, including corrections to the geometry and clamping conditions of the elastic body. The sensitivity of the parameters of the elliptic region of the contact to these factors is investigated.  相似文献   

11.
We study a boundary contact problem for a micropolar homogeneous elastic hemitropic medium with regard of friction; in the considered case, friction forces do not arise in the tangential displacement but correspond to a normal displacement of the medium. We consider two cases: the coercive case (in which the elastic body has a fixed part of the boundary) and the noncoercive case (without fixed parts). By using the Steklov–Poincaré operator, we reduce this problem to an equivalent boundary variational inequality. Existence and uniqueness theorems are proved for the weak solution on the basis of properties of general variational inequalities. In the coercive case, the problem is unconditionally solvable, and the solution depends continuously on the data of the original problem. In the noncoercive case, we present closed-form necessary conditions for the existence of a solution of the contact problem. Under additional assumptions, these conditions are also sufficient for the existence of a solution.  相似文献   

12.
The problem of the uniform heating of a two-layer plate is solved. The transversely isotropic elastic layer (soft plate) investigated is in ideal contact with an absolutely rigid layer, deformable only by thermal expansion. The generalized plane temperature problem reduces to determining the stress-strain state of the soft anisotropic layer investigated using the equations of the mixed problem of elasticity theory. At the ends of the boundary layer of the soft plate (a thin contact layer), no conditions are imposed. On the remaining part of the ends of the soft plate, the boundary conditions correspond to a free boundary. The problem has a bounded smooth solution. Unlike the approach described earlier [1], it is proposed to seek an accurate solution in the form of ordinary Fourier series with respect to a single longitudinal coordinate. Solutions in polynomials are also used. It is shown that the existence of these solutions in polynomials enables the convergence of the Fourier series to be improved considerably.  相似文献   

13.
The contact problem for an arbitrary punch acting on a transversely isotropic elastic layer bonded to a rigid foundation is solved by the generalized images method developed by the author earlier. The problem is reduced to that of an electrostatic problem of infinite row of coaxial charged disks in the shape of the domain of contact. The solution can be obtained by the method of iteration, collocations or any other standard procedure for solving integral equations. Exact inversion can be obtained in the case of a circular domain of contact. The mean value theorem can be used for estimation of the resultant force and tilting moment acting on a punch of arbitrary shape and circular domain of contact. A limiting case of general solution gives the solution for an isotropic layer.  相似文献   

14.
On the basis of /1, 2/, a model is constructed for the contact between a rigid stamp and a rough body taking elastoplastic deformations of the unevenness into account. The contact model for rough bodies with elastic deformations of the unevenness is a special case. A classical approach utilizing boundary integral equations is applied in the mathematical formulation of the contact problem. Under quite general assumptions (for instance, the multiconnectedness of the contact domain desired), the uniqueness and existence of the solution are investigated. A method is developed to determine the contact pressure, the closure of the bodies, and also the contact area which consists of two parts in the general case, a zone of elastoplastic deformation of the unevenness and a zone of their elastic deformation. The efficiency of the method is shown in examples of new contact problems. The solution is represented in a convenient form for analysing the influence of the roughness. This is of considerable value for material testing by a contact method. A fairly complete survey of research on contact problems for rough bodies can be found in /1–4/.  相似文献   

15.
The paper deals with shape optimization of elastic bodies in unilateral contact. The aim is to extend the existing results to the case of contact problems, where the coefficient of friction depends on the solution. We consider the two-dimensional Signorini problem, coupled with the physically less accurate model of given friction, but assume a solution-dependent coefficient of friction. First, we investigate the shape optimization problem in the continuous, infinite-dimensional setting, followed by a suitable finite-dimensional approximation based on the finite-element method. Convergence analysis is presented as well. Next, an algebraic form of the state problem is studied, which is obtained from the discretized problem by further approximating the frictional term by a quadrature rule. It is shown that if the coefficient of friction is Lipschitz continuous with a sufficiently small modulus, then the algebraic state problem is uniquely solvable and its solution is a Lipschitz continuous function of the control variable, describing the shape of the elastic body. For the purpose of numerical solution of the shape optimization problem via the so-called implicit programming approach we perform sensitivity analysis by using the tools from the generalized differential calculus of Mordukhovich. The paper is concluded first order optimality conditions.  相似文献   

16.
We propose a Uzawa block relaxation domain decomposition method for a two-body frictionless contact problem. We introduce auxiliary variables to separate subdomains representing linear elastic bodies. Applying a Uzawa block relaxation algorithm to the corresponding augmented Lagrangian functional yields a domain decomposition algorithm in which we have to solve two uncoupled linear elasticity subproblems in each iteration while the auxiliary variables are computed explicitly using Kuhn–Tucker optimality conditions.  相似文献   

17.
The contact problem for an arbitrary punch acting on a transversely isotropic elastic layer bonded to a rigid foundation is solved by the generalized images method developed by the author earlier. The problem is reduced to that of an electrostatic problem of infinite row of coaxial charged disks in the shape of the domain of contact. The solution can be obtained by the method of iteration, collocations or any other standard procedure for solving integral equations. Exact inversion can be obtained in the case of a circular domain of contact. The mean value theorem can be used for estimation of the resultant force and tilting moment acting on a punch of arbitrary shape and circular domain of contact. A limiting case of general solution gives the solution for an isotropic layer. (Received: August 11, 2003)  相似文献   

18.
A refined formulation of the contact problem when there are intermolecular interaction forces between the contacting bodies is considered. Unlike the traditional formulation, it is assumed that these forces are applied to points within the body, rather than to the surface of the deformable body as a contact pressure, and that the body surface is load-free. Solutions of the contact problems for a thin elastic layer attached to an absolutely rigid substrate and for an elastic half-space are analysed. The refined and traditional formulations of the problem when there is intermolecular interaction are compared. ©2013  相似文献   

19.
The nonstationary space contact problems of plastic flow in the comparatively thin layer between surfaces of external bodies have been analysed in the present paper. Earlier encountered in mathematical modeling peculiarities characterized for considered processes (as the slipping of layer material along contact, high - comparatively with shears - contact pressures, normal elastic movements commensurable with thickness of the layer, the formation of hardened layers near contact) are noted. Other characterized peculiarities, such as the property of anisotropy of friction forces on contact, the possibility of preserving the intermediate lubricant volumes on contact and contact friction faces control, the influence of initial nonhomogeneity on the formation of plastic flow are also considered. In each caw the induced qualitative effects by them are represented.  相似文献   

20.
Three-dimensional mathematical problems of the elasticity theory of anisotropic piecewise homogeneous bodies are discussed. A mixed type boundary contact problem is considered where, on one part of the interface, rigid contact conditions are give (jumps of the displacement and the stress vectors are known), while on the remaining part screen or crack type boundary conditions are imposed. The investigation is carried out by means of the potential method and the theory of pseudodifferential equations on manifolds with boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号