首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The high performance liquid chromatography of polymers under limiting conditions of adsorption (LC LCA) separates macromolecules, either according to their chemical structure or physical architecture, while molar mass effect is suppressed. A polymer sample is injected into an adsorption-active column flushed with an adsorption promoting eluent. The sample solvent is a strong solvent which prevents sample adsorption. As a result, macromolecules of sample elute within the zone of their original solvent to be discriminated from other, non-adsorbing polymer species, which elute in the exclusion mode. LC LCA sample recovery has been studied in detail for poly (methyl methacrylate)s using a bare silica gel column and an eluent comprised toluene (adsorli) and tetrahydrofuran (desorli). Sample solvent was tetrahydrofuran. It was found that a large part of injected sample may be fully retained within the LC LCA columns. The amount of retained polymer increases with decreasing packing pore size and with higher sample molar masses and, likely, also with the column diameter. The extent of full retention of sample does not depend of sample volume. An additional portion of the injected desorli sample solvent (a tandem injection) does not fully eliminate full retention of the sample fraction and the reduced recovery associated with it. The injected sample is retained along the entire LC LCA column. The reduced sample recovery restricts applicability of many LC LCA systems to oligomers and to discrimination of the non-adsorbing minor macromolecular components of complex polymer mixtures from the adsorbing major component(s). The full retention of sample molecules within columns may also complicate the application of other liquid chromatographic methods, which combine entropic and enthalpic retention mechanisms for separation of macromolecules.  相似文献   

2.
Summary Copoly(styrene/acrylonitrile) samples (S/AN) have been repeatedly separated according to composition by gradient HPLC with alkane hydrocarbons as a starting eluent A and dichloromethane (DCM) or tetrahydrofuran (THF) as a solvent B. In these systems, retention increased with AN content of the copolymers. The chemical nature of the column packings used had almost no influence on the retention of S/AN samples. The present paper shows thatn-pentane andn-heptane, when used in a given volumetric gradient with DCM+20% methanol as a solvent B, lead to identical solution characteristics of S/AN on silica columns. A similar result was obtained on C18 columns withn-heptane or cyclohexane, whereas gradient elution with toluene as a starting eluent caused insufficient resolution. Reversed phase separation of S/AN copolymers could be achieved on polystyrene gel columns through gradients with methanol as a starting eluent and DCM or THF as a solvent B. In both systems, retention decreased with increasing AN content of the copolymers. The elution characteristics were almost linear in the range 0–20 wt% AN. This behaviour can be understood in the context of polymer solubility: in both systems, the solubility borderline of S/AN has a distinct maximum at about 25 wt% AN. Reversed phase separation was achieved at the lefthand slope of these curves where the dissolution of a sample with a higher AN content requires less DCM or THF solvent than the dissolution of copolymers which are poorer in AN. This idea predicts that samples with more than 25 wt% AN should elute later than S/AN whose composition is near to the solubility maximum. This indeed was found with a copolymer containing 36.2 wt% AN.  相似文献   

3.
A technique is proposed which allows introduction of very large volumes of liquid (10 ml were tested) into capillary columns equipped with short (1–2 m long) retention gaps. It is based on concurrent solvent evaporation, i.e. evaporation of the solvent during introduction of the sample. The technique presupposes high carrier gas flow rates (at least during sample introduction) and column temperatures near the solvent boiling point. The major limitation of the method is the occurrence of peak broadening for solutes eluted up to 30°, in some cases up to 100°, above the injection temperature. This is due to the absence of solvent trapping and a reduced efficiency of phase soaking. Therefore, use of volatile solvents is often advantageous. Application of the concurrent solvent evaporation technique allows introduction of liquids which do not wet the retention gap surface. However, the method is still not very attractive for analysis of aqueous or water-containing solutions (reversed phase HPLC).  相似文献   

4.
G. Glöckner  D. Wolf 《Chromatographia》1992,34(5-8):363-368
Summary Block copolymers of styrene andt-butyl methacrylate can be analysed by methanol/tetrahydrofuran gradients on C18 or phenyl bonded phase columns. On both of these columns, retention increases with styrene content of the samples. At 50°C, the retention of PS or a block copolymer containing 45% styrene was longer on the phenyl than the C18 columns. This indicates the contribution of adsorption to retention on phenyl bonded phase columns. Lowering the temperature from 50 to 30°C caused earlier elution of part of the sample from the phenyl phase. On a C18 phase the same drop in temperature improved the shape of the peak, which also started later than at 50°C. This effect of temperature is generally observed in polymer retention due to an adsorption mechanism, whereas increasing retention with decrease in temperature is characteristic of a precipitation mechanism.The block copolymer investigated contained 15% free polystyrene precursor which could not be separated from the block copolymer under the conditions employed. The addition of 20% PS homopolymer with a molecular weight similar to that of the styrene block in the copolymer showed that the polystyrene eluted together with the block copolymer, whereas the addition of PS homopolymer with a much higher molecular weight caused an extra peak at the expected elution time.Part I see Ref. [1].Dedicated to Professor Leslie S. Ettre on the occasion of his 70th birthday.  相似文献   

5.
Abstract

The injected volume of a sample dissolved in the mobile phase of an HPLC system must be maintained as small as possible so as to minimize the loss in efficiency. Generally this requirement limits the sensitivity of HPLC methods devoted to trace quantity determinations of drugs in biological fluids. In order to avoid this limitation and to increase the effective sensitivity of HPLC methods for determination of drugs such as antrafenine, nifuroxazide and cipropride, the samples were dissolved in a non-eluting solvent and a large volume (> 100 μl) was injected on to the chromatographic column.

The above-mentioned compounds and their internal standards were dissolved in a series of eluting and non-eluting solvents and increasing volumes (5 to 1000 μl) were injected. Peaks corresponding to injections made in an eluting solvent showed retention times independent of the injection volume but their variances increased with the volume injected. In contrast, peaks corresponding to injections made in a non-eluting solvent, similar to the mobile phase, had a variance independent of the injection volume but their retention times increased linearly with the injection volume. The repeated injection of such non-eluting solvents had no influence on chromatographic behaviour. Peaks corresponding to compounds injected in a non-eluting solvent made with components different from those of the mobile phase had a variance independent of the injection volume but their retention times varied both with the injection volume and with the interval between injection.

The application of non-eluting solvents has been defined theoretically and it has been demonstrated that solutions composed of 25% of the mobile phase diluted with the least eluting of its components act as non-eluting solvents and can be injected in large volume without loss in efficiency. This feature could be used to inject all the samples volume or only part of it, manually or automatically, since any automatic injector can be used with large volumes.

Thus, using the relatively simple procedure of making injections with a non-eluting solvent it is possible to increase both sensitivity and the rate of sample analysis.  相似文献   

6.
Abstract

Fast HPLC offers a definite time advantage for analyses such as content uniformity which requires, in general, a routine analysis of as many as 30 samples and for the analysis of dosage forms of developmental drugs. The columns for Fast HPLC can be used with a minimal amount of modification to conventional HPLC hardware. The resolution obtainable with a Fast HPLC column is poorer than that of a conventional column. (All references to conventional columns in the article imply, unless otherwise indicated, those columns 15-30 cm in length and 3.9-4.6 mm i.d.) Attempts to modify a mobile phase to improve the resolution of a closely eluting peak resulted in retention times not too different from typical conventional columns. Although microbore columns offered improved resolution and a savings in both solvent and sample consumption, the utility of these columns is limited by the need for specialized hardware. Since the sample volume is not a limiting factor in a typical pharmaceutical analysis and overall cost savings from lesser solvent consumption are not significant in a majority of cases as solvent can be recycled, it is concluded that the Fast HPLC columns can play a more important role than the currently available microbore columns in laboratories engaged in pharmaceutical analysis, particularly at the product development stage.  相似文献   

7.
Summary The influence of the injection volume and the sample solvent on column efficiency has been evaluated in packed nano liquid chromatography using columns 150μ i.d. Evaluation of column performance was by means of reduced plate height (h) versus reduced velocity (v) for four polyaromatic hydrocarbon test compounds (PAHs). When compounds are dissolved in a weak solvent (such as MeCN: H2O, 30∶70), and whatever the injection volume −60 or 200 nL-a gain in efficiency can be observed due to the well-known on-column focusing phenomenon, but keeping constant solute retention factors. Under optimized conditions (flow rate: 150 nLmin−1, solvent sample MeCN: H2O, 30∶70, injection volume 200 nL), a reduced plate height of 1.83 has been obtained for a 15 μm C18 packing corresponding to 36000 plates m−1, which illustrates the absence of any extracolumn band broadening under nano LC conditions.  相似文献   

8.
Rapid high‐performance liquid chromatography (HPLC) of polystyrenes, poly(methyl methacrylates), poly(vinyl acetates), and polybutadienes using a monolithic 50 × 4.6 mm i.d. poly(styrene‐co‐divinylbenzene) column have been carried out. The separation process involves precipitation of the macromolecules on the macroporous monolithic column followed by progressive elution utilizing a gradient of the mobile phase. Depending on the character of the separated polymer, solvent gradients were composed of a poor solvent such as water, methanol, or hexane and increasing amounts of a good solvent such as THF or dichloromethane. Monolithic columns are ideally suited for this technique because convection through the large pores of the monolith enhances the mass transport of large polymer molecules and accelerates the separation process. Separation conditions including the selection of a specific pair of solvent and precipitant, flow rate, and gradient steepness were optimized for the rapid HPLC separations of various polymers that differed broadly in their molecular weights. Excellent separations were obtained demonstrating that the precipitation‐redissolution technique is a suitable alternative to size‐exclusion chromatography (SEC). The molecular weight parameters calculated from the HPLC data match well those obtained by SEC. However, compared to SEC, the determination of molecular parameters using gradient elution could be achieved at comparable flow rates in a much shorter period of time, typically in about 1 min. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2767–2778, 2000  相似文献   

9.
Summary Performance was evaluated of silica based commercial monolithic rod-like columns in liquid chromatography of synthetic polymers under limiting conditions of enthalpic interactions (LC LC). LC LC employs the barrier effect of the pore permeating and therefore slowly eluting small molecules toward the pore excluded, fast eluting macromolecules. Phase separation (precipitation) barrier action was applied in present study. The barrier was created either by the narrow pulse of an appropriate nonsolvent injected into the column just before the sample solution (LC LC of insolubility – LC LCI) or by the eluent itself. In the latter case, the polymer sample was dissolved and injected in a good solvent (LC LC of solubility – LC LCS). In LC LCI, polymer species cannot break thru the nonsolvent zone while in LC LCS they cannot enter eluent, which is their precipitant. Therefore, polymer species keep moving in the zone of their original solvent. Macromolecules eluting under the LC LC mechanism leave the column in the retention volume (VR) roughly corresponding to VR of the low molar mass substances and can be efficiently separated from the polymer species non-hindered by the barrier action. The known advantages of monoliths were confirmed. From the point of view of LC LCI and LC LCS the most important quality of monolithic columns represents their excellent permeability, which allows both working at high flow rates and injecting very high (in the range of 5%) sample concentrations. Monolithic column tolerate also extremely high molar mass samples (M>10,000 kg · mol−1). On the other hand, the mesopores (separation pores) of the tested monoliths exhibited rather small volume and wide size distribution. These shortcomings partially impair the permeability advantage of monoliths because in order to obtain high LC LC separation selectivity a tandem of several monolithic columns must be applied. Presence of large mesopores also reduces applicability of monolithic columns for molar masses below about 50 kg · mol−1 because VRs of polymers eluted behind the barrier are similar to that of freely eluting species. The non- negligible break-thru phenomenon was observed for the very high polymer molar masses largely eluting behind the barrier. It is assumed that the fraction of very large mesopores present in the monoliths or association/microphase separation of macromolecules may be responsible for this phenomenon. This is why the presently marketed SiO2 monolithic columns are mainly suitable for the fast purification of the LC LC eluting macromolecules from the polymeric admixtures non-hindered by the barrier-forming liquid. Still, monolithic columns have large potential in the LC LCI and LC LCS procedures provided size (effective diameter) of the mesopores can be reduced and their volume increased.  相似文献   

10.
HPLC fractions involving eluents of low to intermediate polarity can be introduced into capillary GC using the retention gap technique. Partial or complete solvent evaporation during sample introduction reduces the length of, or almost eliminates, the zone in the column inlet (retention gap) flooded by the introduced liquid, allowing introduction of larger HPLC fractions and/or use of shorter retention gaps. The corresponding techniques are reviewed. The retention gap technique is poorly suited for water-containing HPLC eluents (reversed phase HPLC) and fails completely if HPLC eluents contain, e.g., buffer salts. Various techniques for extracting such HPLC eluents are considered, preference being given to extraction into GC stationary phases from where solutes are thermally desorbed into the GC separation column. Limiting factors are diffusion of solutes within the liquid phase to be extracted and retention power of the extraction tubes.  相似文献   

11.
Dynamic density functional theory calculations were performed for thermoplastic elastomer gels composed of an ABA triblock copolymer immersed in a B‐attractive solvent. The triblock copolymer model was parameterized for poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS), while the solvent model was parameterized for the hydrocarbon oil tetradecane. The effect of the solvent concentration and S‐EB interaction on the morphology was investigated, where complementary experimental data was used to validate results at χABN ≈ 100. Agreement was observed at solvent volume fractions of 0.2, 0.4, and 0.6, which correspond to the cylindrical, spherical, and spherical phases, respectively. Qualitative agreement was observed for 0.8 volume fraction solvent, where a core‐shell spherical micelle morphology was found. For a 50/50 vol % mixture of polymer/solvent, the effect of solvent molecular weight on the morphology was considered, where a transition between micro and macrophase separation was predicted at a critical solvent molecular weight. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1479–1491, 2011  相似文献   

12.
K. Hibi  A. Wada  S. Mori 《Chromatographia》1986,21(11):635-641
Summary Several polystyrene gels of different pore sizes were packed into a 500 mm×2.1 mm I.D. column. Semi-micro size-exclusion chromatography (SEC) using these columns was carried out with a system consisting of a triple piston pump, a micro loop injector and a flow cell with 1.0-μl cell volume constructed for semi-micro HPLC, because the dead volume of the injector and the cell volume of flow cell for conventional HPLC caused a significant loss in column efficiency. The effects of sample amount, injection volume and mobile phase flow rate on column efficiency and retention volume were examined and the optimized operational variables of the sample amount (below 500 μg), the injection volume (less than 15 μl) and the flow rate range (30–70 μl/min) determiend for semi-micro SEC. Oligostyrene, epoxy resin, phenol-formaldehyde resin and phthalates were analyzed by the optimized semi-micro SEC system under the given conditions. In addition, molecular weight distribution of four different poly(ethylene terephthalate) films was successfully measured by using a mixture of chloroform and hexafluoroisopropanol as the eluent.  相似文献   

13.
Alkylphenol polyethoxylates (APEs) are a widely used group of nonionic surfactants in commercial production. Characterization of the composition of APE mixtures can be exploited for the determination of their most effective uses. In this study sample mixtures contain nonylphenol polyethoxylates and octylphenol polyethoxylates. The separation of individual alkylphenols by ethoxylate units is performed by supercritical fluid chromatography (SFC)-UV as well as normal-phase high-performance liquid chromatographic (HPLC)-UV employing packed columns. The stationary phase and column length are varied in the SFC setup to produce the most favorable separation conditions. Additionally, combinations of packed columns of different stationary phases are tested. The combination of a diol and a cyano column is found to produce optimal results. An advantage of using packed columns instead of capillary columns is the ability to inject large amounts of sample and thus collect eluted fractions. In this regard, fractions from SFC runs are collected and analyzed by flow injection analysis-electrospray ionization-mass spectroscopy in order to positively identify the composition of the fractions. In comparing the separation of APE mixtures by SFC and HPLC, it is found that SFC provides shorter retention times with similar resolution. In addition, less solvent waste is produced using SFC.  相似文献   

14.
LC of polymers under limiting conditions of adsorption (LC LCA) is a novel method based on different mobility of (pore excluded) macromolecules compared to (pore permeating) solvent molecules. Polymer sample is injected in a solvent preventing its adsorption within the column. Eluent promotes sample adsorption. Under these conditions, macromolecules cannot leave its initial solvent and elute from the column independently of their molar mass. In contrast, a less interactive simultaneously injected polymer leaves its initial solvent zone and is eluted in the size exclusion mode. As a result, chemically different polymer species can be discriminated. The effect of selected experimental conditions was studied on the LC LCA behavior of poly(methyl methacrylate)s eluted from bare silica gel columns. The parameters were packing pore diameter, injected sample volume and concentration, as well as column temperature. The size independent elution was only little affected by the above parameters and LC LCA produced well-focused peaks. The LC LCA mechanism was operative even at a very large sample of both volume and concentration. This makes LC LCA a robust and user-friendly method, likely suitable also for characterization of minor components of polymer mixtures.  相似文献   

15.
Size exclusion chromatographic (SEC) evaluation of secondary mechanisms and column specific resolution, of five solvent/polymer systems in four sets of pure and mixed organic columns packings based on polystyrene/divinylbenzene copolymer, TSK-Gel HHR and TSK-Gel HXL, has been carried out. The combination of columns employed has been: (i) three HHR columns (set A); (ii) two HHR and one HXL column (set B); (iii) one HHR and two HXL columns (set C) and (iv) three HXL columns (set D). Both packings offer similar characteristics (pore size, particle size, efficiency) but some differences have been found when eluting the same systems in different combination of both of them. Values of the chromatographic partition coefficient, Kp, of the volume fraction of the network in the swollen state, 3, and the concentration effect on the retention volume have been related. It can be concluded that the higher the 3, the higher the crosslinking degree and Kp, and the higher the concentration effect on the retention volume for a given solvent/polymer system. We also observe that, in general, a decrease of Kp comes along with an increase of specific resolution, RS, and that the sets of mixed columns show lower secondary effects different from pure size exclusion (lower Kp) and higher RS than the two sets of pure HHR or HXL columns.Presented at: International Symposium on Separation and Characterization of Natural and Synthetic Macromolecules, Amsterdam, The Netherlands, February 5–7, 2003  相似文献   

16.
Summary Proper retention of polymers in high performance liquid chromatography often requires injection into a starting eluent which is not a solvent for the sample under investigation. In this case, the polymer is precipitated at the top of the column. Subsequent gradient elution has to be performed by addition of an eluent with sufficient chromatographic strength and solvent power. In normal phase chromatography, it must be a solvent of high polarity. With the gradient elutions reported so far, polarity and dissolution power were simultaneously increased.The present paper reports the separate control of solvent strength and chromatographic power by applying gradient programs which include sudden addition of a moderately polar solvent. The amount of the latter does not suffice for elution, which is performed by subsequent, controlled addition of a highly polar nonsolvent. Sudden transition gradients of this kind work with, e.g.,iso-octane as a nonpolar starting eluent, tetrahydrofuran as a solvent of intermediate polarity, and methanol as a strongly polar nonsolvent. They have been applied to copolymers from styrene and ethyl methacrylate, methyl methacrylate, or methoxyethyl methacrylate.  相似文献   

17.
大体积进样技术在环境分析中的应用   总被引:2,自引:0,他引:2  
汤凤梅  倪余文  张海军  陈吉平 《色谱》2010,28(5):442-448
在毛细管气相色谱法(CGC)中,采用大体积进样技术(LVI),即使用能够容纳大体积样品的进样装置以及增加可控时间的溶剂蒸汽放空装置,可以满足环境样品中超痕量组分的分析要求,简化样品浓缩步骤以及实现液相色谱(LC)与CGC的在线联用。针对分析物的性质、毛细管柱的规格和分析的目的已发展了多种LVI。本文总结了几种常见的LVI,包括柱头进样(OCI)和程序升温进样(PTV),以及近年来发展的一些新技术,如在柱同时溶剂浓缩进样、样品直接引入进样/复杂基质进样和同时溶剂冷凝无分流进样,阐述了各种进样技术的基本原理及其与样品提取、LC纯化在线联用的方法在环境分析应用中的一些最新研究进展。  相似文献   

18.
The present research focuses on the evaluation of different ionic liquid (IL) stationary phases in gas chromatography. The different IL columns were evaluated in terms of peak resolution (Rs) and peak symmetry for the separation of the chlorobenzenes. The determination of chlorobenzenes in soil samples by means of the optimal IL stationary phase (SLB‐IL82) is proposed as an application. Soil pretreatment was based on a simplified quick, easy, cheap, effective, rugged, and safe extraction procedure and a large injection volume via a programed temperature vaporizer working in solvent vent mode. The retention time of the chlorobenzenes increased as the polarity of the IL column decreased. SLB‐IL82 is the stationary phase that provides the best values as regards Rs and asymmetry factor. Soil sample blanks were spiked with the analytes before subjecting the sample to the extraction process. The existence of a matrix effect was checked and the analytical characteristics of the method were determined in a fortified garden soil sample. The method provided good linearity, good repeatability and reproducibility values, and the LODs were in the 0.1–4.7 μg/kg range. Two fortified soil samples were applied to validate the proposed methodology.  相似文献   

19.
The use of larger volume injection with on‐column injection and fast GC commercial instrumentation was evaluated with the model mixture of n‐alkanes of a broad range of volatility (C10–C28). The presented configuration allows introduction of 40–80‐fold larger sample volumes without any distortion of peak shapes compared to “usual” fast GC set‐ups using narrow‐bore columns. A normal‐bore retention gap (1–5 m×0.32 mm ID) was coupled to a narrow‐bore (5 m×0.1 mm ID×0.4 μm film thickness) analytical column using a standard press‐fit connector. The connection was tight and reliable, and hence suitable for hydrogen as carrier gas. The effect of pre‐column and analytical column connector, injection volume, pre‐column length, column inlet pressure, and analyte volatility on peak shape, peak broadening, and focusing are discussed. The precision of chromatographic data measurements and peak capacity under optimised temperature programmed conditions for fast separations with large volume injection were found to be very good. The presented fast GC set‐up with on‐column injection extends the applicability of the technique to trace analysis.  相似文献   

20.
Monolithic capillary columns have been prepared in fused‐silica capillaries by radical co‐polymerization of ethylene dimethacrylate and butyl methacrylate in the presence of porogen solvent mixtures containing various concentration ratios of 1‐propanol, 1,4‐butanediol, and water with azobisisobutyronitrile as the initiator of the polymerization reaction. The through pores in organic polymer monolithic columns can be characterized by “equivalent permeability particle size”, and the mesopores with stagnant mobile phase by “equivalent dispersion particle size”. Increasing the concentration of propanol in the polymerization mixture diminishes the pore volume and size in the monolithic media and improves the column efficiency, at a cost of decreasing permeability. Organic polymer monolithic capillary columns show similar retention behaviour to packed alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have different methylene selectivities. Higher concentrations of propanol in the polymerization mixture increase the lipophilic character of the monolithic stationary phases. Best efficiencies and separation selectivities were found for monolithic columns prepared using 62–64% propanol in the porogen solvent mixture. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra‐column contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号