首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic and magnetization properties of fcc Co1−xPtx (x?0.3) alloy nanowires fabricated by electrodeposition into self-synthesized anodic alumina templates are investigated. Magnetization curves, measured for varying wire geometries, show a crossover of easy axis of magnetization from parallel to perpendicular to the nanowire axis as a function of the diameter and length. The measured values of coercivity (Hc) and remanent squareness (SQ) of CoPt nanowire arrays, as a function of angle (θ) between the field and wire axis, support the crossover of easy axis of magnetization. The curling mode of the magnetization reversal process is observed for CoPt nanowire arrays. At low temperatures, the easy axis for magnetization of the nanowires is observed to deviate from the room-temperature orientation.  相似文献   

2.
The magnetic hysteresis of Fe57Ni43/Si(100) with magnetic anisotropy induced by an external field has been studied by Brillouin light scattering (BLS). The results are compared with those of the magneto-optic-Kerr-effect (MOKE) measurement and the vibrating sample magnetometer (VSM). The BLS results show that the sample film has strong in-plane anisotropy. The angle between the magnetization and a 4.6 G applied magnetic field H reaches a maximum value of 45° when H lies along the hard axis. The coercivity and magnetic anisotropy field for the film obtained by the BLS are compared with the values obtained by the VSM and MOKE measurement.  相似文献   

3.
The behaviour of ferromagnetic materials under very low magnetic field was investigated more than a century ago by Lord Rayleigh. However, it has been shown since that the so-called Rayleigh law fails for very low magnetic fields, although the explanation for this phenomenon was not given. An anomalous BH behaviour at very low alternating peak flux density in conventional grain-oriented (GO) and non-oriented (NO) electrical steels is reported. It has been found that the initial permeability is constant for all the measured frequencies (from 20 to 400 Hz) at peak flux density below 0.1 mT, and in this region the magnetisation is almost reversible (for both GO and NO). At higher flux density the BH loops become visibly irreversible, with a relatively narrow (for GO) or very wide (for NO) transition region. For GO the BH loop becomes visibly “distorted” for all frequencies at around 2 mT. The eddy current loss calculated from the so-called “classical” equation gives values higher than the measured total losses at lower frequencies. Both these measured results are difficult to explain.  相似文献   

4.
Herein, a discussion of the effect of deposition temperature on the magnetic behavior of Ni0.5Zn0.5Fe2O4 thin films. The thin films were grown by r.f. sputtering technique on (1 0 0) MgO single-crystal substrates at deposition temperatures ranging between 400 and 800 °C. The grain boundary microstructure was analyzed via atomic force microscopy (AFM). AFM images show that grain size (φ∼70-112 nm) increases with increasing deposition temperature, according to a diffusion growth model. From magneto-optical Kerr effect (MOKE) measurements at room temperature, coercive fields, Hc, between 37and 131 Oe were measured. The coercive field, Hc, as a function of grain size, reaches a maximum value of 131 Oe for φ ∼93 nm, while the relative saturation magnetization exhibits a minimum value at this grain size. The behaviors observed were interpreted as the existence of a critical size for the transition from single- to multi-domain regime. The saturation magnetization (21 emu/g<Ms<60 emu/g) was employed to quantify the critical magnetic intergranular correlation length (Lc≈166 nm), where a single-grain to coupled-grain behavior transition occurs. Experimental hysteresis loops were fitted by the Jiles-Atherton model (JAM). The value of the k-parameter of the JAM fitted by means of this model (k/μo∼50 A m2) was correlated to the domain size from the behavior of k, we observed a maximum in the density of defects for the sample with φ∼93 nm.  相似文献   

5.
Magnetic excitations in a series of GaMnAs ferromagnetic semiconductor films were studied by ferromagnetic resonance (FMR). Using the FMR approach, multi-mode spin wave resonance spectra have been observed, whose analysis provides information on magnetic anisotropy (including surface anisotropy), distribution of magnetization precession within the GaMnAs film, dynamic surface spin pinning (derived from surface anisotropy), and the value of exchange stiffness constant D. These studies illustrate a combination of magnetism and semiconductor physics that is unique to magnetic semiconductors.  相似文献   

6.
A magnetic fringe-field effect has been investigated for a simple bilayer device structure consisting of a Co0.9Fe0.1 film and an epitaxial YBa2Cu3O7−δ (YBCO) film patterned as a microbridge. The resistance of the bridge is measured with a four-probe technique and is found to depend on the orientation of a magnetic field, which is externally applied in the device plane. A maximum (minimum) of the resistance occurs when the magnetic field is applied in parallel (perpendicular) to the bridge axis. The difference between the maximum and the minimum is very large for a small range of temperature below the critical temperature of the YBCO film. The observed features in the resistance are qualitatively explained by vortex motion in the YBCO bridge under the influence of the magnetic fringe-field of the Co0.9Fe0.1 film.  相似文献   

7.
Catalyst is considered to be the most crucial parameter for the growth of carbon nanotubes. In this work we study the ferromagnetic resonance (FMR) spectra of the catalyst nanoclusters. Moreover we report for the first time the angle FMR studies of catalyst particles with and without CNT layer. The dependencies of the FMR spectra, X-ray diffraction (XRD) patterns, Raman spectra and morphology of the CNT layers on the growth conditions are discussed.  相似文献   

8.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si(1 0 0) and glass substrates. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Alternating gradient field magnetometer (AGFM) measurements provided saturation magnetization values ranging from 220 to 1200 emu/cm3. Values of squareness exceeding 0.8 have been measured. Coercive field may reach values up to 700 Oe, depending on the percentage of chromium, as well as the substrate nature and the direction of the applied magnetic field. The saturation magnetization value decreases as the Cr content increases. In order to study their dynamical magnetic properties, Brillouin Light Scattering (BLS) measurements have been performed on these samples. Stiffness constant value and anisotropy magnetic field were adjusted to fit the experimental BLS spectra. These results are analyzed and correlated.  相似文献   

9.
The results of two-dimensional micromagnetic modeling of magnetization patterns in Permalloy ellipses under the influence of rotating constant-amplitude magnetic fields are discussed. Ellipses of two different lateral sizes have been studied, 0.5 μm×1.5 μm and 1 μm×3 μm. The amplitude of the rotating magnetic field was varied between simulations with the condition that it must be large enough to saturate or nearly saturate the ellipse with the field applied along the long axis of the ellipse. For the smaller ellipse size it is found that the magnetization pattern forms an S state and the direction of the net magnetization lags behind the direction of the applied field. At a critical angle of the rotating magnetic field the direction of the magnetization switches by a large angle to a new S state. Both the critical angle and the angle interval of the switch depend on field amplitude. For this new state, it is instead the applied field direction that lags behind the magnetization direction. The transient magnetization patterns correspond to multi-domain patterns including two vortices, but this state never exists for the equilibrated magnetization patterns. The behavior of the larger ellipse in rotating field is different. With the field applied along the long-axis of the ellipse, the magnetization of the ellipse is nearly saturated with a vortex close to each apex of the ellipse. As the field is rotated, this magnetization pattern remains and the net-magnetization direction lags behind the direction of the field until for a certain angle of the applied field an equilibrium multi-domain state is created. Comparisons are made with corresponding experimental results obtained by performing in-field magnetic force microscopy on Permalloy ellipses.  相似文献   

10.
The nonlinear voltage response in soft magnetic amorphous wires exciting by an alternating current is studied. The frequency spectrum of the voltage in the pick-up coil wound around the wire with a helical anisotropy is found in the framework of a model based on quasi-static Stoner−Wohlfarth magnetization reversal. The effect of a deviation of the anisotropy axis from the azimuthal direction on the field dependences of amplitudes of voltage harmonics is analyzed. It is shown that the field sensitivity of even harmonics increases with the anisotropy axis deviation angle. The current amplitude range to obtain a maximal field sensitivity of the second harmonic is found. The influence of the skin effect on the frequency spectrum of the pick-up coil voltage is discussed. The results obtained may be of importance for the development of sensors of a weak magnetic field.  相似文献   

11.
The exchange coupling strength of NiFe/Cu/IrMn trilayer films was examined with both a new magneto optical Kerr effect (MOKE) method developed for the exchange coupling field determination and ferromagnetic resonance (FMR) measurements. We found that the value for exchange coupling field obtained by the MOKE technique coincided with FMR result with high accuracy. Other peculiarities of FMR measurements due to interlayer exchange coupling such as angular dependence of resonance field on Cu spacer thickness are also shown in the article.  相似文献   

12.
The behavior of the Steinmetz coefficient has been described for several different materials: steels with 3.2% Si and 6.5% Si, MnZn ferrite and Ni–Fe alloys. It is shown that, for steels, the Steinmetz law achieves R2>0.999 only between 0.3 and 1.2 T, which is the interval where domain wall movement dominates. The anisotropy of Steinmetz coefficient for non-oriented (NO) steel is also discussed. It is shown that for a NO 3.2% Si steel with a strong Goss component in texture, the power law coefficient and remanence decreases monotonically with the direction of measurement going from rolling direction (RD) to transverse direction (TD), although coercive field increased. The remanence behavior can be related to the minimization of demagnetizing field at the surface grains. The data appear to indicate that the Steinmetz coefficient increases as magnetocrystalline anisotropy constant decreases.  相似文献   

13.
Optical absorption spectra due to Fano resonance (FR) of an exciton in a quantum well with an external electric field perpendicular to the layer plane are presented, based on multi-channel scattering calculations incorporating a hole-subband mixing effect. Peak values of the calculated FR spectra exhibit anomalous field-dependent changes. These cannot be accounted for by the commonly-known quantum-confined Stark effect (QCSE) that has been applied exclusively to bound state spectra. This behavior, ascribable to correlation between Fano couplings and the QCSE, is revealed just in high-resolution spectra, otherwise the field-dependence results in nothing but the same as that of the bound-state spectra.  相似文献   

14.
Assuming that different energy dissipation mechanisms are at work along hysteresis, a hysteresis loss subdivision procedure has been proposed, using the induction at maximum permeability (around 0.8 T, in electrical steels) as the boundary between the “low-induction” and the “high-induction” regions. This paper reviews the most important results obtained in 10 years of investigation of the effect of microstructure on these components of the hysteresis loss. As maximum induction increases, the “low-induction loss” increases linearly up to 1.2 T, while the “high-induction loss” is zero up to 0.7 T and then increases as a power law with n=5. Low-induction loss behavior is linearly related to Hc between 0.4 and 1.2 T. Grain size has a larger influence on low-induction losses than on high-induction losses. Texture has a much stronger influence on high loss than on low-induction loss, and it is related to the average magnetocrystalline energy. 6.5%Si steel shows smaller hysteresis loss at 1.5 T than 3.5%Si steel only because of its smaler high-induction component. The abrupt increase in hysteresis loss due to very small plastic deformation is strongly related to the high-induction loss component. These results are discussed in terms of energy dissipation mechanisms such as domain wall movement, irreversible rotation and domain wall energy dissipation at domain nucleation and annihilation.  相似文献   

15.
We present and discuss power loss measurements performed in Fe–(3.5 wt%)Si nonoriented laminations up to very high flux densities. The results are obtained on disk samples using a 1D/2D single-sheet tester, where the fieldmetric and the thermometric methods are applied upon overlapping polarization ranges. The power loss in the highest polarization regimes (e.g. Jp>1.8 T) is measured, in particular, by the rate of rise of temperature method, both under controlled and uncontrolled flux density waveform, the latter case emulating the conditions met in practical unsophisticated experiments. Lack of control at such extreme Jp levels is conducive to strong flux distortion, but the correspondingly measured loss figure can eventually be converted to the one pertaining to sinusoidal induction at the same Jp values. This is demonstrated as a specific application of the statistical theory of magnetic losses, where the usual formulation for the energy losses in magnetic sheets under distorted induction is exploited in reverse fashion.  相似文献   

16.
We report a comparison of rotational energy loss measurements in the same non-oriented Fe–Si laminations carried out by two laboratories Istituto Nazionale di Ricerca Metrologica (INRiM) in Torino, Italy and Wolfson Centre for Magnetics (WCM) in Cardiff, United Kingdom. The measurements were performed on disk samples at magnetizing frequencies between 5 and 200 Hz with controlled circular flux density loci ranging between 0.2 and 1.9 T. Energy loss was measured applying both the fieldmetric and the rate-of-rise of temperature methods. The latter, exploiting the rate of rise of temperature under quasi-adiabatic conditions, is conveniently adopted on approaching magnetic saturation. Results from the two laboratories agree well up to 1.4 T, despite the different physical principles of the fieldmetric vs. rate-of-rise of temperature methods and the different size of sample and measuring areas. The rate-of-rise of temperature method seems to be the natural approach at high induction values.  相似文献   

17.
Separation of total energy dissipation per magnetisation cycle into a frequency-dependent dynamic component and a frequency-independent hysteresis component is a common practise in evaluating electromagnetic losses in Si–Fe electrical steel sheet. The assumed frequency-independent hysteresis component is defined by a coefficient C0 (J/kg). In this work, the value of C0 was determined using a linear extrapolation method and quasi-static hysteresis energy loss per cycle. The extrapolation method gave a considerable error when applied to non-sinusoidal excitation voltages (pulse width modulation and square) in a frequency range from 25 to 100 Hz. For this reason the coefficient values obtained from the quasi-static measurements at 0.01 Hz were assumed.  相似文献   

18.
(Fe48Pt52)100−x–(MgO)x films were used to examine the performance of a perpendicular percolated medium. Two underlayers, Pt(0 0 1)/Cr(0 0 2) and MgO(0 0 2), were used for comparison. The (Fe48Pt52)100−x–(MgO)x film with the MgO underlayer exhibits a strong preference to segregate at FePt grain boundaries. The microstructure with small closely packed MgO particles (2–4 nm) dispersed uniformly in the L10 FePt matrix was achieved in the Pt/Cr underlayered sample. Structural data reveal that the precipitate is crystallographically coherent with the surrounding L10 FePt phase and preserves good lattice alignment. Magnetic results indicate significant pinning behavior for those introduced non-magnetic columns with an enhanced coercivity of about 70%—much greater than that of the MgO underlayered samples. Percolated perpendicular medium can be realized in the FePt system and a Pt(0 0 1)/Cr(0 0 2) underlayer promotes the formation of pinning sites within the FePt grains.  相似文献   

19.
Co2MnGe films of 30 and 50 nm in thickness were grown by RF-sputtering. Their magnetic anisotropies, dynamic properties and the different excited spin wave modes have been studied using conventional ferromagnetic resonance (FMR) and Microstrip line FMR (MS-FMR). From the in-plane and the out-of-plane resonance field values, the effective magnetization (4πMeff) and the g-factor are deduced. These values are then used to fit the in-plane angular-dependence of the uniform precession mode and the field-dependence of the resonance frequency of the uniform mode and the first perpendicular standing spin wave to determine the in-plane uniaxial, the four-fold anisotropy fields, the exchange stiffness constant and the magnetization at saturation. The samples exhibit a clear predominant four-fold magnetic anisotropy besides a smaller uniaxial anisotropy. This uniaxial anisotropy is most probably induced by the growth conditions.  相似文献   

20.
The value of the effective magnetic anisotropy constant of the ferrimagnetic nanoparticles Zn0.15Ni0.85Fe2O4 embedded in a SiO2 silica matrix, determined through ferromagnetic resonance (FMR), is much higher than the magnetocrystalline anisotropy constant. The higher value of the anisotropy constant is due to the existence of surface anisotropy. However, even if the magnetic anisotropy is high, the ferrimagnetic nanoparticles with a 15% concentration, which are isolated in a SiO2 matrix, display a superparamagnetic (SPM) behavior at room temperature and at a frequency of the magnetization field equal to 50 Hz. The FMR spectrum of the novel nanocomposite (Zn0.15Ni0.85Fe2O4)0.15/(SiO2)0.85, recorded at room temperature and a frequency of 9.060 GHz, is observed at a resonance field (B0r) of 0.2285 T, which is substantially lower than the field corresponding to free electron resonance (ESR) (0.3236 T). Apart from the line corresponding to the resonance of the nanoparticle system, the spectrum also contains an additional weaker line, identified for a resonance field of ∼0.12 T, which is appreciably lower than B0r. This line was attributed to magnetic ions complex that is in a disordered structure in the layer that has an average thickness of 1.4 nm, this layer being situated on the surface of the Zn0.15Ni0.85Fe2O4 nanoparticles that have a mean magnetic diameter of 8.9 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号