首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Laser-induced incandescence (LII) as a diagnostic technique is based on rapid heating of soot particles to temperatures of several thousand Kelvin and subsequent detection of the thermal radiation from the laser-heated particles. At such high temperatures, soot sublimation effects must be considered when estimating uncertainties in LII measurements. In this work we have investigated the use of various laser fluences in LII using a Nd:YAG laser at 1,064 nm. Using another Nd:YAG laser at 532 nm, the elastic light scattering (ELS) signal from soot particles heated by the 1,064-nm laser was monitored. This approach makes it possible to determine at which fluence of the LII laser soot sublimation starts to become visible as a decrease in the ELS signal. By performing the measurements at various heights in a premixed sooting flat ethylene/air flame, the fluence threshold above which the ELS signal decreased was found to be higher at the lower flame heights corresponding to younger, smaller and less aggregated particles. The results from this work indicate that the different fluence thresholds for sublimation may be explained by a lower absorption function E(m) for the younger soot particles.  相似文献   

2.
In order to understand the processes involved in the laser-induced incandescence (LII) technique, the value of soot temperature at the peak of the incandescence signal has been studied. To this purpose, an absolute two-color LII technique has been applied on ethylene and methane diffusion flames, based on the comparison with a calibrated tungsten ribbon lamp. The dependence of peak temperature on the fluence has been investigated by using a sharply edged probe beam. Above a certain fluence threshold a value close to 4000 K was obtained for both flames at all locations, that means in largely different soot conditions. At a suitably selected laser fluence, radial and axial profiles of peak soot temperature and volume fraction were performed. Soot volume fraction data have been validated with results from laser extinction technique measurements. The quite low values observed for methane prove the sensitivity of the LII technique. Moreover, a discussion about soot refractive index is presented. In the visible region a test of its influence on both soot volume fraction and soot peak temperature was carried out, while in the infrared the heating process was analyzed. PACS 42.62.b; 42.87-d; 44.40+a  相似文献   

3.
Theoretical papers predict that prompt LII signals are weakly dependent on the soot size due to the fact that larger particles reach higher temperatures during the heating process by nanosecond laser pulses. This question is of crucial importance for establishing LII as a practical technique for soot volume fraction measurements. In this work two-color prompt LII measurements have been performed in several locations of diffusion and rich premixed ethylene-air flames. The experimental apparatus was carefully designed with a probe volume of uniform light distribution and sharp edges, a 4 ns integration time around the signal pulse peak and narrow spectral bandwidth. Measurements did not confirm the theoretical predictions concerning an increase of temperature for larger particles. On the contrary, larger particles in richer premixed flames exhibit a lower 400/700 signal ratio. This can probably be attributed to small differences in the refractive index of soot.  相似文献   

4.
This study concerns the effect of soot-particle aggregation on the soot temperature derived from the signal ratio in two-color laser-induced incandescence measurements. The emissivity of aggregated fractal soot particles was calculated using both the commonly used Rayleigh–Debye–Gans fractal-aggregate theory and the generalized Mie-solution method in conjunction with numerically generated fractal aggregates of specified fractal parameters typical of flame-generated soot. The effect of aggregation on soot temperature was first evaluated for monodisperse aggregates of different sizes and for a lognormally distributed aggregate ensemble at given signal ratios between the two wavelengths. Numerical calculations were also conducted to account for the effect of aggregation on both laser heating and thermal emission at the two wavelengths for determining the effective soot temperature of polydisperse soot aggregates. The results show that the effect of aggregation on laser energy absorption is important at low fluences. The effect of aggregation on soot emissivity is relatively unimportant in LII applications to typical laminar diffusion flames at atmospheric pressure, but it can become more important in flames at high pressures due to larger primary particles and wider aggregate distributions associated with enhanced soot loading.  相似文献   

5.
Soot formation characteristics of a lab-scale pulverized coal flame were investigated by performing carefully controlled laser diagnostics. The spatial distributions of soot volume fraction and the pulverized coal particles were measured simultaneously by laser induced incandescence (LII) and Mie scattering imaging, respectively. In addition, the radial distributions of the soot volume fraction were compared with the OH radical fluorescence, gas temperature and oxygen concentration obtained in our previous studies [1], [2]. The results indicated that the laser pulse fluence used for LII measurement should be carefully controlled to measure the soot volume fraction in pulverized coal flames. To precisely measure the soot volume fraction in pulverized coal flames using LII, it is necessary to adjust the laser pulse fluence so that it is sufficiently high to heat up all the soot particles to the sublimation temperature but also sufficiently low to avoid including a too large of a change in the morphology of the soot particles and the superposition of the LII signal from the pulverized coal particles on that from the soot particles. It was also found that the radial position of the peak LII signal intensity was located between the positions of the peak Mie scattering signal intensity and peak OH radical signal intensity. The region, in which LII signal, OH radical fluorescence and Mie scattering coexisted, expanded with increasing height above the burner port. It was also found that the soot formation in pulverized coal flames was enhanced at locations where the conditions of high temperature, low oxygen concentration and the existence of pulverized coal particles were satisfied simultaneously.  相似文献   

6.
We have measured time-resolved laser-induced incandescence of flame-generated soot under high-vacuum conditions (4.1×10−6 mbar) at an excitation wavelength of 532 nm with laser fluences spanning 0.06–0.5 J/cm2. We generated soot in an ethylene/air diffusion flame, introduced it into the vacuum system with an aerodynamic lens, heated it using a pulsed laser with a spatially homogeneous and temporally smooth laser profile, and recorded LII temporal profiles at 685 nm. At low laser fluences LII signal decay rates are slow, and LII signals persist beyond the residence time of the soot particles in the detection region. At these fluences, the temporal maximum of the LII signal increases nearly linearly with increasing laser fluence until reaching a plateau at ∼0.18 J/cm2. At higher fluences, the LII signal maximum is independent of laser fluence within experimental uncertainty. At these fluences, the LII signal decays rapidly during the laser pulse. The fluence dependence of the vacuum LII signal is qualitatively similar to that observed under similar laser conditions in an atmospheric flame but requires higher fluences (by ∼0.03 J/cm2) for initiation. These data demonstrate the feasibility of recording vacuum LII temporal profiles of flame-generated soot under well-characterized conditions for model validation.  相似文献   

7.
This paper presents the study we carried out on the formation of soot particles in low-pressure premixed CH4/O2/N2 flames by using Laser-Induced Incandescence (LII). Flames were stabilised at 26.6 kPa (200 torr). Four different equivalence ratios were tested (Φ = 1.95, 205, 2.15 and 2.32), Φ = 1.95 corresponding to the equivalence ratio for which LII signals begin to be measurable along the flame. The evolution of the LII signals with laser fluence (fluence curve), time (temporal decay) and emission wavelength is reported at different heights above the burner. We specifically took advantage of the low-pressure conditions to probe with a good spatial resolution the soot inception zone of the flames. Significant different behaviours of the fluence curves are observed according to the probed region of the flames and Φ. In addition, while the surface growth process is accompanied by an increase in the LII decay-times (indicator of the primary particle diameter) at higher Φ, decay-times become increasingly short at lower Φ reaching a constant value along the flame at Φ = 1.95. These behaviours are consistent with the detection of the smallest incandescent particles in the investigated flames, these particles having experienced very weak surface growth. Flame modelling including soot formation has been implemented in flames Φ = 2.05 and 2.32. Experimental quantitative soot volume fraction profiles were satisfactorily reproduced by adjusting the fraction of reactive soot surface available for reactions. The qualitative variation of the computed soot particle diameter and the relative weight of surface growth versus nucleation were consistent with the experimental observations.  相似文献   

8.
Soot formation is compared in turbulent diffusion flames burning a commercial Diesel and two Diesel surrogates containing n-decane and α-methylnaphthalene. A burner equipped with a high-efficiency atomisation system has been specially designed and allows the stabilisation of liquid fuels flames with similar hydrodynamics conditions. The initial surrogate composition (70% n-decane, 30% α-methylnaphthalene) was previously used in the literature to simulate combustion in Diesel engines. In this work, a direct comparison of Diesel and surrogates soot tendencies is undertaken and relies on soot and fluorescent species mappings obtained respectively by Laser-Induced Incandescence (LII) at 1064 nm and Laser-Induced Fluorescence at 532 nm. LIF was assigned to soot precursors and mainly to high-number ring Polycyclic Aromatic Hydrocarbons (PAH). The initial surrogate was found to form 40% more soot than the tested Diesel. Consequently, a second surrogate containing a lower α-methylnaphthalene concentration (20%) has been formulated. That composition which presents a Threshold Soot Index (TSI) very close to Diesel one is also consistent with our Diesel composition that indicates a relatively low PAH content. The spatially resolved measurements of soot and fluorescent soot precursors are quite identical (in shape and intensity) in the Diesel and in the second surrogate flames. Furthermore the concordance of the LII temporal decays suggests that a similar growth of the primary soot particles has occurred for Diesel and surrogates. In addition, the comparison of the LII fluence curves indicates that physical/optical properties of soot contained in the different flames might be similar. The chemical composition present at the surface of soot particles collected in Diesel and surrogate flames has been obtained by laser-desorption ionisation time-of-flight mass spectrometry. An important difference is found between Diesel and surrogate samples indicating the influence of the fuel composition on soot content.  相似文献   

9.
2 at 1064 nm, vaporization/fragmentation of soot primary particles and aggregates occurs. Optical measurements are performed using a second laser pulse to probe the effects of these changes upon the LII signal. With the exception of very low fluences, the structural changes induced in the soot lead to a decreased LII intensity produced by the second laser pulse. These two-pulse experiments also show that these changes do not alter the LII signal on timescales less than 1 μs for fluences below the vaporization threshold. Received: 20 October 1997/Revised version: 16 February 1998  相似文献   

10.
The effect of sub-nanosecond fluence fluctuations and triggering on time-resolved laser-induced incandescence (LII) from soot has been studied using an injection-seeded pulsed Nd:YAG laser that produces a smooth laser temporal profile. Without injection seeding, this multi-mode laser generates pulses with large intensity fluctuations with sub-nanosecond rise times. The experimental results described here demonstrate that at fluences below 0.6 J/cm2 LII signals are insensitive to fluence fluctuations on nanosecond time scales. At fluences above 0.6 J/cm2 fluctuations in the laser profile cause the rising edge of the LII profile to move around in time relative to the center of the laser pulse causing a broader average profile that shifts to earlier times. Such fluctuations also lead to a decrease in the average LII temporal profile by up to 12% at a fluence of 3.5 J/cm2. A timing jitter on the trigger of the data acquisition, such as that produced by triggering on the laser Q-switch synchronization pulse, has a negligible effect on the shape and temporal maximum of the LII signal. Additional jitter, however, considerably reduces the peak of the LII temporal profiles at fluences as low as 0.15 J/cm2. Neither fast fluence fluctuations nor trigger jitter have a significant effect on gated LII signals, such as those used to infer soot volume fraction.  相似文献   

11.
In this work, the two-excitation wavelength laser induced incandescence (LII) method has been applied in a low-pressure premixed methane/oxygen/nitrogen flame (equivalence ratio 2.32) to determine the variation of the ratio of the soot absorption functions at 532 nm and 1064 nm E(m,532 nm)/E(m,1064 nm) along the flame. This method relies on the comparison of LII signals measured upon two different excitation wavelengths (here 532 nm and 1064 nm) and with laser fluences selected in such a way that the soot particles are equally laser-heated. The comparison of the laser fluences at 532 nm and 1064 nm leads to an easy determination of E(m,532 nm)/E(m,1064 nm). The reliability of the method is demonstrated for the first time in a low pressure flame in which the soot nucleation zone can be spatially resolved and which contains soot particles acting differently with the laser fluence according to their residence time in the flame. The method is then applied to determine the profile of E(m,532 nm)/E(m,1064 nm) along the flame. A very important decrease of this ratio is observed in the region of nascent soot, while the ratio remains constant at high distance above the burner. Implication on temperature determination from spectrally resolved measurement of flame emission is studied.  相似文献   

12.
A novel concept for remote in situ detection of soot emissions by a combination of laser-induced incandescence (LII) and light detection and ranging (lidar) is presented. A lidar setup based on a picosecond Nd:YAG laser and time-resolved signal detection in the backward direction was used for LII measurements in sooty premixed ethylene–air flames. Measurements of LII–lidar signal versus laser fluence and flame equivalence ratio showed good qualitative agreement with data reported in literature. The LII–lidar signal showed a decay consisting of two components, with lifetimes of typically 20 and 70 ns, attributed to soot sublimation and conductive cooling, respectively. Theoretical considerations and analysis of the LII–lidar signal showed that the derivative was proportional to the maximum value, which is an established measure of soot volume fraction. Utilizing this, differentiation of LII–lidar data gave profiles representing soot volume fraction with a range resolution of ~16 cm along the laser beam propagation axis. The accuracy of the evaluated LII-profiles was confirmed by comparison with LII-data measured simultaneously employing conventional right-angle detection. Thus, LII–lidar provides range-resolved single-ended detection, resourceful when optical access is restricted, extending the LII technique and opening up new possibilities for laser-based diagnostics of soot and other carbonaceous particles.  相似文献   

13.
Time-resolved laser-induced incandescence (LII) signal of soot in an ethylene laminar diffusion flame was measured with varying laser pulse durations in the range 50–600 ns. This study presents original results since the majority of LII studies reported are based on 7–10-ns pulse duration. The LII signal from soot is a combination of heating and cooling processes of different time scales, and the influence of the pulse duration is therefore particularly relevant. The most striking finding is that when the pulse durations is longer than approximately 100 ns, the time-resolved LII signal reveals a rebound of the LII signal during its slow decaying part. This feature occurs preferably at high fluence and is unexpected as none of the physical and chemical processes known to control LII signal behaviour, and their models suggest such an effect. The phenomenon occurs with both top hat and near Gaussian temporal laser shapes. Inspection of the time-resolved emission spectra shows no indication of a laser-induced fluorescence effect, although gas-phase PAH generated during the laser heating of soot particles cannot be rejected. Other hypotheses are that the mechanism responsible for that behaviour is linked to a slow rate change of the soot morphological characteristics or to the generation of new particles during the long-duration laser excitation. Finally, experiments show that soot volume fraction measured by integrating the temporal LII signal is not affected by the pulse duration in any regions of the flame, implying that the LII method is applicable with long pulse duration lasers.  相似文献   

14.
We have measured time-resolved laser-induced incandescence (LII) from combustion-generated mature soot extracted from a burner and (1) coated with oleic acid or (2) coated with oleic acid and then thermally denuded using a thermodenuder. The soot samples were size selected using a differential mobility analyzer and characterized with a scanning mobility particle sizer, centrifugal particle mass analyzer, and transmission electron microscope. The results demonstrate a strong influence of coatings on the magnitude and temporal evolution of the LII signal. For coated particles, higher laser fluences are required to reach signal levels comparable to those of uncoated particles. The peak LII curve is shifted to increasingly higher fluences with increasing coating thickness until this effect saturates at a coating thickness of ~75 % by mass. These effects are predominantly attributable to the additional energy needed to vaporize the coating while heating the particle. LII signals are higher and signal decay rates are significantly slower for thermally denuded particles relative to coated or uncoated particles, particularly at low and intermediate laser fluences. Our results suggest negligible coating enhancement in absorption cross-section for combustion-generated soot at the laser fluences used. Apparent enhancement in absorption with restructuring may be caused by less conductive cooling.  相似文献   

15.
16.
Laser-Induced Incandescence (LII) occurs when a high-energy pulsed laser is used to heat soot to incandescent temperatures. Theoretical calculations predict and experimental tests demonstrate the resulting incandescence to be a measure of soot-volume fraction. Practical implementation of the technique is detailed by examining the spectral character, temporal behavior, and excitation-intensity dependence of the resulting thermal emission from the laser-heated soot in both premixed and diffusion flames. Spatial and temporal capabilities of LII are demonstrated by obtaining one- and two-dimensional images of soot-volume fraction via laser-induced incandescence in both types of flames.  相似文献   

17.
Laser-induced incandescence (LII) was used to derive temperatures of pulsed laser heated soot particles from their thermal emission intensities detected at two wavelengths in a laminar ethylene/air co-annular diffusion flame. The results are compared to those of a numerical nanoscale heat and mass transfer model. Both aggregate and primary particle soot size distributions were measured using transmission electron microscopy (TEM). The model predictions were numerically averaged over these experimentally derived size distributions. The excitation laser wavelength was 532 nm, and the LII signal was detected at 445 nm and 780 nm. A wide range of laser fluence from very low to moderate (0.13 to 1.56 mJ/mm2) was used in the experiments. A large part of the temporal decay curve, beginning 12–15 nsec after the peak of the laser excitation pulse, is successfully described by the model, resulting in the determination of accommodation coefficients, which varies somewhat with soot temperature and is in the range of 0.36 to 0.46. However, in the soot evaporative regime, the model greatly overpredicts the cooling rate shortly after the laser pulse. At lower fluences, where evaporation is negligible, the initial experimental cooling rates, immediately following the laser pulse, are anomalously high. Potential physical processes that could account for these effects are discussed. From the present data the soot absorption function, E(m), of 0.4 at 532 nm is obtained. A procedure for correcting the measured signals for the flame radiation is presented. It is further shown that accounting for the local gas temperature increase due to heat transfer from soot particles to the gas significantly improves the agreement in the temperature dependence of soot cooling rates between model and experiments over a large range of laser fluences.  相似文献   

18.
Although the two-color laser-induced incandescence technique (2C-LII) has proved to be a significant tool for soot diagnostics, many efforts are still required to gain a whole understanding of the chemical and physical processes involved. Time-resolved two-color LII measurements are carried out in a rich ethylene/air premixed flame at different heights above the burner and by changing the laser fluence. The prompt LII at two wavelengths and the corresponding soot incandescence temperature are obtained at different stages of the soot growth and under different laser irradiations. The decay rate of the LII signals, as a method for soot sizing, is investigated at different laser fluence. The time-resolved LII curves, obtained in the low laser fluence regime, are analyzed by a numerical simulation, available on the web. By considering the gas/particle initial temperature obtained with thermocouple measurements and by knowing soot particle diameter with previous TEM and extinction/scattering measurements, information about soot parameters, such as absorption function and thermal accommodation coefficient are obtained. The presence of the so-called young or mature soot along the flame height is strictly related to different optical and heat-exchange properties necessary to fit all the experimental data available.  相似文献   

19.
This study shows how soot particles inside the cylinder of the engine are reduced due to high pressure fuel injection used in a light-duty single-cylinder optical diesel engine fuelled with methyl decanoate, a selected surrogate fuel for the diagnostics. For various injection pressures, planar laser induced incandescence (PLII) imaging and planar laser-induced fluorescence of hydroxyl (OH-PLIF) imaging were performed to understand the temporal and spatial development of soot and high-temperature flames. In addition, a thermophoresis-based particle sampling technique was used to obtain transmission electron microscope (TEM) images of soot aggregates and primary particles for detailed morphology analysis. The OH-PLIF images suggest that an increase in the injection pressure leads to wider distribution of high-temperature flames likely due to better mixing. The enhanced high-temperature reaction can promote soot formation evidenced by both a faster increase of LII signals and larger soot aggregates on the TEM images. However, the increased OH radicals at higher injection pressure accelerates the soot oxidation as shown in a higher decreasing rate of LII signals as well as dramatic reduction of the sampled soot aggregates at later crank angles. The analysis of nanoscale carbon layer fringe structures also shows a consistent trend that, at higher injection pressure, the soot particles are more oxidized to form more graphitic carbon layer structures. Therefore, it is concluded that the in-cylinder soot reduction at higher injection pressure conditions is due to enhanced soot oxidation despite increased soot formation.  相似文献   

20.
Laser-induced incandescence has been rapidly developed into a powerful diagnostic technique for measurements of soot in many applications. The incandescence intensity generated by laser-heated soot particles at the measurement location suffers the signal trapping effect caused by absorption and scattering by soot particles present between the measurement location and the detector. The signal trapping effect was numerically investigated in soot measurements using both a 2D LII setup and the corresponding point LII setup at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh–Debye–Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The contribution of scattering to signal trapping was found to be negligible in atmospheric laminar diffusion flames. When uncorrected LII intensities are used to determine soot particle temperature and the soot volume fraction, the errors are smaller in 2D LII setup where soot particles are excited by a laser sheet. The simple Beer–Lambert exponential attenuation relationship holds in LII applications to axisymmetric flames as long as the effective extinction coefficient is adequately defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号