首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Within the kinetic energy driven superconducting mechanism, the evolution of the magnetic excitations of the electron-doped cuprates in the superconducting state is studied. It is shown that there is a broad commensurate low energy magnetic scattering peak, while the magnetic resonance energy is located among this broad commensurate low energy scattering range. This broad commensurate low energy magnetic scattering disperses outward into a continuous ring-like incommensurate magnetic scattering at high energy.  相似文献   

2.
Applying a three-band model and the random phase approximation, we theoretically study the spin excitations in nickelate superconductors, which have been newly discovered. The spin excitations were found to be incommensurate in the low energy region.The spin resonance phenomenon emerged as the excitation energy increased. The intensity can be maximized at the incommensurate or commensurate momentum, depending on the out-of-plane momentum. The spin excitations reverted to incommensurate at higher energies. We also discuss the similarities and differences in the spin excitations of nickelate and cuprate superconductors.Our predicted results can be later validated in inelastic neutron scattering experiments.  相似文献   

3.
We use cold neutron spectroscopy to study the low-energy spin excitations of superconducting (SC) FeSe0.4Te0.6 and essentially nonsuperconducting (NSC) FeSe0.45Te0.55. In contrast with BaFe2-x(Co,Ni)xAs2, where the low-energy spin excitations are commensurate both in the SC and normal state, the normal-state spin excitations in SC FeSe0.4Te0.6 are incommensurate and show an hourglass dispersion near the resonance energy. Since similar hourglass dispersion is also found in the NSC FeSe0.45Te0.55, we argue that the observed incommensurate spin excitations in FeSe(1-x)Tex are not directly associated with superconductivity. Instead, the results can be understood within a picture of Fermi surface nesting assuming extremely low Fermi velocities and spin-orbital coupling.  相似文献   

4.
A neutron scattering study of heavily hole-overdoped superconducting KFe2As2 revealed a well-defined low-energy incommensurate spin fluctuation at [π(1 ± 2 δ),0] with δ = 0.16. The incommensurate structure differs from the previously observed commensurate peaks in electron-doped AFe2As2 (A = Ba, Ca, or Sr) at low energies. The direction of the peak splitting is perpendicular to that observed in Fe(Te,Se) or in Ba(Fe,Co)2As2 at high energies. A band structure calculation suggests interband scattering between bands around the Γ and X points as an origin of this incommensurate peak. The perpendicular direction of the peak splitting can be understood within the framework of multiorbital band structure. The results suggest that spin fluctuation is more robust in hole-doped than in electron-doped samples, which can be responsible for the appearance of superconductivity in the heavily hole-doped samples.  相似文献   

5.
Inelastic neutron scattering measurements have been performed on high quality single crystals of in order to study the spin dynamics of this compound. In addition to the well-established incommensurate magnetic response, we show the existence of a new set of low energy excitations present in the whole superconducting region of the phase diagram. This new feature of the dynamical cross section is characterized, below about 10 K, by very short range ( lattice spacing) antiferromagnetic correlations and by a low energy scale of meV. At higher temperatures these fluctuations become nearly Q-independent. Different possible origins of these new spin correlations are discussed. Received: 3 September 1997 / Revised: 21 November 1997 / Accepted: 26 January 1998  相似文献   

6.
We present numerical and analytical results for the thermodynamical properties of the spin-1/2 Heisenberg chain at arbitrary external magnetic field. Special emphasis is placed on logarithmic corrections in the susceptibility and specific heat at very low temperatures (T/J=10-24) and small fields. A longstanding controversy about the specific heat is resolved. At zero temperature the spin-Peierls exponent is calculated in dependence on the external magnetic field. This describes the energy response of the system to commensurate and incommensurate modulations of the lattice. The exponent for the spin gap in the incommensurate phase is given. Received: 12 February 1998 / Received in final form: 15 March 1998 / Accepted: 17 March 1998  相似文献   

7.
To test the prediction that the dispersion of the magnetic resonance in superconducting YBa2Cu3O(6+x) is similar to magnons in an incommensurate antiferromagnet, we have mapped out the spin dynamics in a stripe-ordered nickelate, La(2-x)SrxNiO4, with x approximately equal to 0.31, using inelastic neutron scattering. We observe spin-wave excitations up to 80 meV emerging from the incommensurate magnetic peaks with a surprisingly large and almost isotropic spin velocity: variant Planck's over 2 pi c(s) approximately 0.32 eV A. A comparison indicates that the inferred spin-excitation spectrum is not, by itself, an adequate model for the magnetic resonance feature of the superconductor.  相似文献   

8.
A stepwise transition from one incommensurate state of the spin system of a copper metaborate crystal to another incommensurate state was previously revealed using neutron scattering in an applied magnetic field. In this paper, the new state is interpreted as a combination of a commensurate state of one spin subsystem and an incommensurate state of another spin subsystem of the crystal.  相似文献   

9.
Tao Xie 《中国物理 B》2021,30(12):127402-127402
We report an inelastic neutron scattering investigation on the spin resonance mode in the optimally hole-doped iron-based superconductor Ba0.67K0.33Fe2As2 with Tc=38.2 K. Although the resonance is nearly two-dimensional with peak energy ER≈14 meV, it splits into two incommensurate peaks along the longitudinal direction ([H, 0, 0]) and shows an upward dispersion persisting to 26 meV. Such dispersion breaks through the limit of total superconducting gaps tot=|k|+|k+Q|(about 11-17 meV) on nested Fermi surfaces measured by high resolution angle resolved photoemission spectroscopy (ARPES). These results cannot be fully understood by the magnetic exciton scenario under s±-pairing symmetry of superconductivity, and suggest that the spin resonance may not be restricted by the superconducting gaps in the multi-band systems.  相似文献   

10.
We argue that a multiband superconductor with sign-changing gaps may have multiple spin resonances. We calculate the RPA-based spin resonance spectra of a pnictide superconductor by using the five-band tight-binding model or angle-resolved photoemission spectroscopy Fermi surface (FS) and experimental values of superconducting gaps. The resonance spectra split in both energy and momenta due to the effects of multiband and multiple gaps in s(±) pairing; the higher energy peak appears around the commensurate momenta due to scattering between α-FS to γ/δ-FS pockets. The second resonance is incommensurate, coming from β-FS to γ/δ-FS scatterings, and its q vector is doping-dependent and, hence, on the FS topology. Energies of both resonances ω(res)(1,2) are strongly doping-dependent and are proportional to the gap amplitudes at the contributing FSs.  相似文献   

11.
The momentum dependence of the low energy quasiparticle spectrum and the related Bogoliubov angle in cuprate superconductors are studied within the kinetic energy driven superconducting mechanism. By calculation of the ratio of the low energy quasiparticle spectra at positive and negative energies, it is shown that the Bogoliubov angle increases monotonically across the Fermi crossing point. The results also show that the superconducting coherence of the low energy quasiparticle peak is well described by a simple d-wave Bardeen-Cooper-Schrieffer formalism, although the pairing mechanism is driven by the kinetic energy by exchanging spin excitations.  相似文献   

12.
We present an interpretation of the recent neutron data on the commensurate and incommensurate spin fluctuations found in YBa2Cu3O6+y based on a special configuration of the electronic dispersion and intervention from the dx2y2-wave superconducting phase. The observed switch-over between the commensurate and incommensurate fluctuation spectra at the change of frequency or temperature is naturally accounted within this scenario.  相似文献   

13.
Inelastic neutron scattering (INS) is employed to study damped spin-wave excitations in the noncentrosymmetric heavy-fermion superconductor CePt3Si along the antiferromagnetic Brillouin zone boundary in the low-temperature magnetically ordered state. Measurements along the (1/2 1/2 L) and (H H 1/2 - H) reciprocal-space directions reveal deviations in the spin-wave dispersion from the previously reported model. The broad asymmetric shape of the peaks in energy signifies strong spin-wave damping by interactions with the particle-hole continuum. Their energy width exhibits no evident anomalies as a function of momentum along the (1/2 1/2 L) direction which could be attributed to Fermi surface nesting effects, implying the absence of pronounced commensurate nesting vectors at the magnetic zone boundary. In agreement with a previous study, we find no signatures of the superconducting transition in the magnetic excitation spectrum, such as a magnetic resonant mode or a superconducting spin gap, either at the magnetic ordering wavevector (0 0 1/2) or at the zone boundary. However, the low superconducting transition temperature in this material still leaves the possibility of such features being weak and therefore hidden below the incoherent background at energies ? 0.1 meV, precluding their detection by INS.  相似文献   

14.
We report neutron scattering studies on two single crystal samples of the electron-doped (n-type) superconducting (SC) cuprate Nd2-xCexCuO4 (x=0.15) with T(c)=18 and 25 K. Unlike the hole-doped (p-type) SC cuprates, where incommensurate magnetic fluctuations commonly exist, the n-type cuprate shows commensurate magnetic fluctuations at the tetragonal (1/2 1/2 0) reciprocal points both in the SC and in the normal state. A spin gap opens up when the n-type cuprate becomes SC, as in the optimally doped p-type La2-xSrxCuO4. The gap energy, however, increases gradually up to about 4 meV as T decreases from T(c) to 2 K, which contrasts with the spin pseudogap behavior with a T-independent gap energy in the SC state of p-type cuprates.  相似文献   

15.
Detailed neutron scattering measurements of YBa2Cu3O6.95 found that the resonance peak and incommensurate magnetic scattering induced by superconductivity represent the same physical phenomenon: two dispersive branches that converge near 41 meV and the in-plane wave vector q(AF)=(pi/a,pi/a) to form the resonance peak. One branch has a circular symmetry around q(AF) and quadratic downward dispersion from approximately 41 meV to the spin gap of 33+/-1 meV. The other, of lower intensity, disperses from approximately 41 meV to at least 55 meV. Our results exclude a quartet of vertical incommensurate rods in q-omega space expected from spin waves produced by dynamical charge stripes as an origin of the observed incommensurate scattering in optimally doped YBCO.  相似文献   

16.
Neutron scattering has been used to measure the charge and spin structure in the YBa2Cu3O6+x superconductors. Incommensurate static charge ordering is found at low doping levels while only charge fluctuations are found at higher doping. The spin structure is complex with both a commensurate resonance and incommensurate structure observed at low temperatures. The scattering results are used to construct a phase diagram for stripes in the YBa2Cu3O6+x system.  相似文献   

17.
The electron spin resonance is studied for noncollinear low-dimensional antiferromagnets RbMnBr3 and RbFe(MoO4)2 in a wide range of frequencies and fields. Both compounds have incommensurate spin structures appearing due to a low-symmetry distortion of an ideal hexagonal crystal lattice. Magnetic field applied in the spin plane induces a first-order transition into the commensurate phase. The low-energy resonance branch corresponding to a uniform oscillation of the spin system in the easy plane is observed in the two compounds in both incommensurate and commensurate phases, with a dramatic change of the spectra taking place near the transition field. The resonance spectrum of a nearly commensurate spin structure with long-wave modulations is analyzed in clean and dirty limits in the framework of a hydrodynamic approach. The resonance branch with steep field dependence in the incommensurate state is attributed to the acoustic mode with the gap resulted from pinning of local domain walls (discommensurations) on defects of the crystal structure.  相似文献   

18.
We review the contribution of infrared spectroscopy to the study of the pseudogap in high temperature superconductors. The pseudogap appears as a depression of the frequency dependent conductivity in the c-axis direction and seems to be related to a real gap in the density of states. It can also be seen in the Knight shift, photoemission and tunneling experiments. In underdoped samples it appears near room temperature and does not close with temperature. Another related phenomenon that has been studied by infrared is the depression in the ab-plane scattering rate. Two separate effects can be discerned. At high temperatures there is broad depression of scattering below 1000 cm−1 which may be related to the gap in the density of states. At a lower temperature a sharper structure is seen, which appears to be associated with scattering from a mode at 300 cm−1, and which governs the carrier life time at low temperatures. This mode shows up in a number of other experiments, as a kink in angle resolved photoemission dispersion, and a resonance at 41 meV in magnetic neutron scattering. Since the infrared technique can be used on a wide range of samples it has provided evidence that the scattering mode is present in all high temperature cuprates and that its frequency in optimally doped materials scales with the superconducting transition temperature. The lanthanum and neodymium based cuprates do not follow this scaling and appear to have depressed transition temperatures.  相似文献   

19.
Single crystal neutron diffraction studies have been performed on the S = 3/2 kagome staircase compound Co(3)V(2)O(8) with a magnetic field applied along the magnetization easy-axis ([Formula: see text]). Previous zero-field measurements (Chen Y et al 2006 Phys. Rev. B 74 014430) reported a rich variety of magnetic phases, with a ferromagnetic ground state as well as incommensurate, transversely polarized spin density wave (SDW) phases (with a propagation vector of [Formula: see text]) interspersed with multiple commensurate lock-in transitions. The magnetic phase diagram with [Formula: see text] adds further complexity. For small applied fields, μ(0)H ≈ 0.05 T, the commensurate lock-in phases are destabilized in favor of the incommensurate SDW ones, while slightly larger applied fields restore the commensurate lock-in phase with δ = 1/2 and yield a new commensurate phase with δ = 2/5. For measurements in an applied field, higher-order scattering is observed that corresponds to the second harmonic.  相似文献   

20.
High-resolution neutron inelastic scattering experiments in applied magnetic fields have been performed on La1.895Sr0.105CuO4 (LSCO). In zero field, the temperature dependence of the low-energy peak intensity at the incommensurate momentum transfer QIC=(0.5,0.5+/-delta,0),(0.5+/-delta,0.5,0) exhibits an anomaly at the superconducting Tc which broadens and shifts to lower temperature upon the application of a magnetic field along the c axis. A field-induced enhancement of the spectral weight is observed, but only at finite energy transfers and in an intermediate temperature range. These observations establish the opening of a strongly downward renormalized spin gap in the underdoped regime of LSCO. This behavior contrasts with the observed doping dependence of most electronic energy features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号