首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Physica A》2005,358(1):197-204
We present ellipsometry and interferrometry experiments which allow us to observe the transition point between the standard first-order wetting and the long-range critical wetting. Moreover we provide a direct measurement of the free-energy singularities in the sequential wetting scenario of alkanes on water.  相似文献   

2.
Ellipsometry measurements of the wetting behavior of different alkanes on water show a sequence of two wetting transitions: a first-order (discontinuous) transition followed by a critical (continuous) one. We report temperature-induced wetting transitions for different alkanes and a novel pressure-induced wetting transition for an alkane mixture. The experiments enable us to determine the global wetting phase diagram as a function of chain length and temperature which we subsequently calculate theoretically. The two transition lines are found to be approximately parallel, in accordance with basic theoretical arguments.  相似文献   

3.
A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. In this Letter we study the dynamical wetting transition at which a liquid film gets deposited by withdrawing a vertical plate out of a liquid reservoir. It has recently been predicted that this wetting transition is critical with diverging time scales and coincides with the disappearance of stationary menisci. We demonstrate experimentally and theoretically that the transition is due to the formation of a solitary wave, well below the critical point. As a consequence, relaxation times remain finite at threshold. The structure of the liquid deposited on the plate involves a capillary ridge that does not trivially match the Landau-Levich film.  相似文献   

4.
A simple mean-field theory is presented which describes the basic observations of recent experiments revealing rich wetting behaviour of n-alkane/methanol mixtures at the liquid-vapour interface. The theory, qualitative and in part heuristic, is based on a microscopic lattice-gas model from which a Cahn–Landau approach is distilled. Besides the physics associated with the short-range components of the intermolecular interactions, effects of the long-range tails of the net van der Waals forces between interfaces are also taken into account. Further, gravitational thinning of the wetting phase is incorporated. The calculation of the spreading coefficient S is extended to the experimentally relevant situation in which the bulk adsorbate is slightly away from two-phase coexistence due to gravity. Analysis of this novel approximation to S for systems with short-range forces leads to the conclusion that the surface specific heat exponents s =1,1/2, and 0, for first-order wetting, tricritical wetting and critical wetting, respectively, are robust with respect to (weak) gravitational thinning, consistently with experiment. For three different systems the adsorption is calculated as a function of temperature and compared with the experimentally measured ellipticity. Including weak long-range forces which favour wetting in the theory does not visibly alter the critical wetting transition for the nonane/methanol mixture, in contrast with the generic expectation of first-order wetting for such systems, but in good agreement with experiment. For decane/methanol weak long-range forces bring the transition very close to the prewetting critical point, leading to an adsorption behaviour closely reminiscent of short-range tricritical wetting, observed experimentally for alkane chain length between 9.6 and 10. Finally, for undecane/methanol the transition is clearly of first order. First-order wetting is also seen in the experiment.  相似文献   

5.
We apply the phenomenological wetting theory of Cahn to fluids with van der Waals forces, and in particular to the wetting of pentane on water. Taking into account explicitly the long-range substrate–adsorbate interaction allows us to reproduce the experimentally observed critical wetting transition, which arises from the vanishing of the Hamaker constant at T53°C. This transition is preceded by a first-order transition between a thin and a thick film at a (much) lower temperature. If long-range forces are neglected, this thin–thick transition is the only wetting transition and critical wetting is missed. Our study focuses on the development of useful theoretical tools, such as phase portraits and interface potentials adapted to systems with van der Waals forces.  相似文献   

6.
The present work reports, for the first time, a direct experimental observation of the critical phenomenon associated with the B2-A2 order-disorder transition of Al-Fe binary alloys. Transmission electron microscopy and energy dispersion spectroscopy are employed to span the morphological changes through the transition line from the ordered B2 phase to the disordered A2 phase. Dark field images of the microstructure around the transition line for samples aged at 973 and 1073 K for various times show an interface roughening for the {100} antiphase domain boundaries in body-centered cubic binary alloys having the B2 structure. This observation confirms theory about the instability of the second-order transition in such alloys. This behaviour occurs for compositions with Al-content slightly higher (by ∼4 at.% Al) than that of the critical point of the equilibrium order-disorder transition. In addition, roughness-induced wetting transition is also observed for alloys having compositions ranging from 1.3 to 1.5 at.% Al above the transition line. The interface roughening transition is thought to be unstable second-order while the wetting transition is suggested to be a stable first-order one.  相似文献   

7.
《Physica A》1991,174(1):139-148
A system of binary mixtures of two liquid crystal compounds is prepared possessing a tricritical point in the smectic A-ferroelectric smectic C transition line in the temperature-composition plane. In several mixtures with different distinctness of the first-order nature of the transition the approximate coordinates of the electric-field-induced critical point, at which the first-order transition vanishes, are determined by measurements of the electric displacement. The critical field strength and the temperature difference between the transition at zero field and the critical point shrink to zero as the tricritical point is approached. This is the first study of the wing critical points of a tricritical point in liquid crystal phase transitions.  相似文献   

8.
We show that quantum correlations as quantified by quantum discord can characterize quantum phase transitions by exhibiting nontrivial long-range decay as a function of distance in spin systems. This is rather different from the behavior of pairwise entanglement, which is typically short-ranged even in critical systems. In particular, we find a clear change in the decay rate of quantum discord as the system crosses a quantum critical point. We illustrate this phenomenon for first-order, second-order, and infinite-order quantum phase transitions, indicating that pairwise quantum discord is an appealing quantum correlation function for condensed matter systems.  相似文献   

9.
J.O. Indekeu 《Physica A》2010,389(20):4332-4359
Equilibrium wetting phase transitions and critical phenomena are discussed from a phenomenological point of view. The ubiquitous character of the wetting phase transition is illustrated through its occurrence in a variety of condensed matter systems, ranging from classical fluids to superconductors and Bose-Einstein condensates. The intriguing behaviour of the three-phase contact line and its line tension, at wetting, is an example of a fundamental problem in this field on which much progress has been made.  相似文献   

10.
Mechanisms of the appearance of anomalous properties experimentally observed at the transition through the quantum critical point in rare-earth intermetallides have been studied. Quantum phase transitions are induced by the external pressure and are manifested as the destruction of the long-range antiferromagnetic order at zero temperature. The suppression of the long-range order is accompanied by an increase in the area of the Fermi surface, and the effective electron mass is strongly renormalized near the quantum critical point. It has been shown that such a renormalization is due to the reconstruction of the quasiparticle band, which is responsible for the formation of heavy fermions. It has been established that these features hold when the coexistence phase of antiferromagnetism and superconductivity is implemented near the quantum critical point.  相似文献   

11.
Phase transition and critical properties of Ising-like spin-orbital interacting systems in 2-dimensional triangular lattice are investigated. We first show that the ground state of the system is a composite spin-orbital ferro-ordered phase. Though Landau effective field theory predicts the second-order phase transition of the composite spin-orbital order, however, the critical exponents obtained by the renormalization group approach demonstrate that the spin-orbital order-disorder transition is far from the second-order, rather, it is more close to the first-order. The unusual critical behavior near the transition point is attributed to the fractionalization of the composite order parameter.  相似文献   

12.
In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain.  相似文献   

13.
C. T. Hsieh  J. T. Lue   《Physics letters. A》2002,300(6):636-640
The classical, thermally driven transition from ferrimagnets to superparamagnets in Fe3O4 nanoparticles can be converted into another quantum phase by a transverse microwave magnetic field or by a strong internal anisotropic field. These fields, perpendicular to the Ising axis, can destroy the magnetic long-range order to quantum paramagnets as the fields exceed some critical values. We have exploited the spin resonance spectrometer to determine the dynamic spin susceptibility and the critical exponent γ, which is a power-law dependent spanning of the quantum critical point. Quantum phase transition observed at low temperatures for small magnetite nanoparticles induced by strong surface anisotropic field illustrates the fascinating interplay between thermal and quantum fluctuations in the vicinity of a quantum critical point.  相似文献   

14.
ABSTRACT

We present a numerical study of a simple density functional theory model of fluid adsorption occurring on a planar wall decorated with a narrow deep stripe of a weaker adsorbing (relatively solvophobic) material, where wall-fluid and fluid-fluid intermolecular forces are considered to be dispersive. Both the stripe and outer substrate exhibit first-order wetting transitions with the wetting temperature of the stripe lying above that of the outer material. This geometry leads to a rich phase diagram due to the interplay between the pre-wetting transition of the outer substrate and an unbending transition corresponding to the local evaporation of liquid near the stripe. Depending on the width of the stripe, the line of unbending transitions merges with the pre-wetting line inducing a two-dimensional wetting transition occurring across the substrate. In turn, this leads to the continuous pre-drying of the thick pre-wetting film as the pre-wetting line is approached from above. Interestingly we find that the merging of the unbending and pre-wetting lines occurs even for the widest stripes considered. This contrasts markedly with the scenario where the outer material has the higher wetting temperature, for which the merging of the unbending and pre-wetting lines only occurs for very narrow stripes.  相似文献   

15.
In disordered itinerant magnets with arbitrary symmetry of the order parameter, the conventional quantum critical point between the ordered phase and the paramagnetic Fermi liquid (PMFL) is destroyed due to the formation of an intervening cluster glass (CG) phase. In this Letter, we discuss the quantum critical behavior at the CG-PMFL transition for systems with continuous symmetry. We show that fluctuations due to quantum Griffiths anomalies induce a first-order transition from the PMFL at T = 0, while at higher temperatures a conventional continuous transition is restored. This behavior is a generic consequence of enhanced non-Ohmic dissipation caused by a broad distribution of energy scales within any quantum Griffiths phase in itinerant systems.  相似文献   

16.
We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.  相似文献   

17.
When is the numerical value of the critical point changed by an enhancement of the process or of the interaction? Ferromagnetic spin models, independent percolation, and the contact process are known to be endowed with monotonicity properties in that certain enhancements are capable of shifting the corresponding phase transition in only an obvious direction, e. g., the addition of ferromagnetic couplings can only increase the transition temperature. The question explored here is whether enhancements do indeed change the value of the critical point. We present a generally applicable approach to this issue. For ferromagnetic Ising spin systems, with pair interactions of finite range ind?2 dimensions, it is shown that the critical temperatureT c is strictly monotone increasing in each coupling, with the first-order derivatives bounded by positive functions which are continuous on the set of fullyd-dimensional interactions. For independent percolation, with 0<p c<1, we prove that any “essential enhancement” of the process has an effect on the critical probability, a result with applications to the question of the existence of “entanglements” and to invasion percolation with trapping.  相似文献   

18.
We investigate wetting transitions in a binary fluid at a solid surface by means of a density functional approach. For this purpose we use the symmetric binary mixture model, which exhibits a demixing in a bulk phase. We concentrate on the evaluation of the phase diagrams in the case of adsorption from a gas phase at a fixed composition. Our calculations have revealed different scenarios, leading to the change of wettability of the surface. In the case of adsorption from an equimolar bulk gas the wetting transition may be of the first or of the second order. In the case of non-equimolar bulk composition we observe either a transition from partial to complete wetting, or a first-order transition between two partial wetting states.  相似文献   

19.
We study the statistical mechanics of hydrogen dissolved in metals. The underlying model is based on the assumption that the dominant attractive interaction between the protons in the metal is of an elastic nature.

In the first part of the paper we review some general properties of the elastic interaction. We then discuss the importance of boundary conditions for the form of the elastic interaction, which turns out to be of the Curie-Weiss type with macroscopic range.

In the second part we investigate the a-a' (‘gas-liquid’) phase transition in the hydrogen lattice fluid. The long-range part of the elastic interaction is treated in mean field approximation. In the canonical ensemble as opposed to the grand canonical ensemble one finds no co-existing phases near the critical point. Instead there is a continuous transition which changes into a first-order transition at tricritical points. In the temperature-density region which normally corresponds to the two-phase co-existence region the hydrogen density is inhomogeneous and varies on a macroscopic scale.

The peculiar nature of the a-a' phase transition is due to the long-range character of the elastic interaction, which ultimately results from the requirement of coherency of the host crystal. We argue that coherent metal-hydrogen systems offer examples of real systems where the classical theory of phase transitions applies.  相似文献   

20.
The possibility of wetting phase transitions in Bose-Einstein condensed gases is predicted on the basis of Gross-Pitaevskii theory. The surface of a binary mixture of Bose-Einstein condensates can undergo a first-order wetting phase transition upon varying the interparticle interactions, using, e.g., Feshbach resonances. Interesting ultra-low-temperature effects shape the wetting phase diagram. The prewetting transition is, contrary to general expectations, not of first order but critical, and the prewetting line does not meet the bulk phase coexistence line tangentially. Experimental verification of these extraordinary results is called for, especially now that it has become possible, using optical methods, to realize a planar "hard wall" boundary for the condensates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号