首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 759 毫秒
1.
Nanocrystalline spinel ferrite thin films of CoxFe3−xO4 (x=0.3x=0.3, 0.5, 0.8, and 1.0) have been prepared by RF sputtering on quartz substrate without a buffer layer at room temperature and annealed at the temperature range from 200 to 600 °C in air. The as-sputtered films exhibit the preferred orientation and the high magnetization and coercivity. After annealing, the preferred orientations become poor, but the magnetization and coercivity increase. The sample with a magnetization of 455 emu/cm3, a coercivity of 2.8 kOe, a remanence ratio of 0.72, and a maximum energy product of 2.4 MGOe has been obtained. The influence of Co ions and annealing temperature on the magnetic properties has been discussed.  相似文献   

2.
The structure, magnetic properties and magnetostriction of Fe81Ga19 thin films have been investigated by using X-ray diffraction analysis, scanning electron microscope (SEM), vibrating sample magnetometer and capacitive cantilever method. It was found that the grain size of as-deposited Fe81Ga19 thin films is 50–60 nm and the grain size increases with increase in the annealing temperature. The remanence ratio (Mr/Ms) of the thin films slowly decreases with increase in the annealing temperature. However, the coercivity of the thin films goes the opposite way with increase in the annealing temperature. A preferential orientation of the Fe81Ga19 thin film fabricated under an applied magnetic field exists along 〈1 0 0〉 direction due to the function of magnetic field during sputtering. An in-plane-induced anisotropy of the thin film is well formed by the applied magnetic field during the sputtering and the formation of in-plane-induced anisotropy results in 90° rotations of the magnetic domains during magnetization and in the increase of magnetostriction for the thin film.  相似文献   

3.
The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni80Fe20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni80Fe20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni80Fe20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.  相似文献   

4.
This study aims to evaluate magnetic and micro-structural properties of amorphous/nanocrystalline mechanically alloyed Ni58Fe12Zr20B10 powders with ball-milling time up to 190 h. Structural, micro-structural and thermal evaluations of the milled powders were carried out by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and differential scanning calorimetry (DSC) methods. Magnetic properties were also measured by a vibrating sample magnetometer (VSM) instrument. Results showed that the amorphous phase reached maximum value of 95% and the crystallite size was about 3 nm at the end of the milling. Magnetization saturation (Ms) decreased slightly and coercivity (Hc) reached to the highest value at 72 h of the milling time. At the 190 h of milling, the coercivity and saturation magnetization reached 18 Oe and 20 emu/g, respectively. While, after an appropriate amount of heat treatment, these two variables became approximately 2 Oe and 32 emu/g.  相似文献   

5.
Nanostructured Fe49Co49V2 powders were produced by high energy milling at different milling times and then examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The saturation magnetization and coercivity of samples were measured at room temperature by a vibration sample magnetometer (VSM). Structural studies show that as the milling time increases from 0 to 125 h, the average grain size reduces from 130 to about 8-10 nm, while the microstrain increases up to 1.7%. The lattice parameter decreases from 0 to 36 h and then increases up to 125 h. According to the XRD patterns, the formation of intermetallic compound of (Fe, Co)V after about 16 h affects the magnetic properties. The coercivity totally increases up to 61 Oe due to the introduction of microstrain during the milling process. Magnetic measurements reveal that the saturation magnetization has some fluctuations during the milling treatment and finally at 125 h reaches about 180 emu/g  相似文献   

6.
The nanocrystalline samples of La0.9Sr0.1MnO3 (LSMO) have been prepared by the combustion method. The thermo gravimetric analysis of precursor was carried out. The X-ray diffraction study confirms the rhombohedral crystal structure without any other impurity phases. The morphology and magnetic properties change with annealing temperature. The saturation magnetization increases linearly and coercivity of the nanoparticles varies significantly as annealing temperature increases. The maximum saturation magnetization and lower coercivity found for the sample heat treated at 1200 °C are 52.5 emu/g and 10.7 Oe respectively.  相似文献   

7.
We have studied the effect of thermal treatment on the magnetic domain structure and magnetic reversal process of amorphous and nanocrystalline Fe40Co38Mo4B18 microwires. The domain structure and the magnetization reversal of amorphous FeCoMoB microwires reflect the complex stress distribution introduced by the glass coating. Hence, the thickness of radial domain structure decreases with temperature and the temperature dependence of the switching field presents a discontinuous behavior. After nanocrystallization, the domain structure of FeCoMoB microwire is almost constant within the temperature range 10-400 K and the switching field decreases almost linearly with temperature mostly because of the decrease of saturation magnetization.  相似文献   

8.
This paper investigates structural, microstructural and magnetic properties of amorphous/nanocrystalline Ni58Fe12Zr10Hf10B10 powders prepared by high energy milling. Ball milling of Ni, Fe, Zr, Hf and B leads to alloying of the element powders at 120 h. The results show that at 190 h the amorphous content is at the highest level and the grain size is about 2 nm. The magnetic measurements reveal that the coercivity and the saturation magnetization reach about 20 Oe and 30 emu/g at 190 h and become approximately 5 Oe and 40 emu/g after a suitable heat treatment, respectively.  相似文献   

9.
The effects of oxygen pressure during deposition on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) films grown on Si (100) substrate with Pt (111) underlayer by pulsed laser deposition have been investigated. X-ray diffraction pattern confirms that the films have c-axis perpendicular orientation. The c-axis dispersion (Δθ50) increases and c-axis lattice parameter decreases with increasing oxygen pressure. The films have hexagonal shape grains with diameter of 150-250 nm as determined by atomic force microscopy. The coercivities in perpendicular direction are higher than those in in-plane direction, which shows the films have perpendicular magnetic anisotropy. The saturation magnetization and anisotropy field for the film deposited in oxygen pressure of 0.13 mbar are comparable to those of the bulk strontium hexaferrite. Higher oxygen pressure leads to the films having higher coercivity and squareness. The coercivity in perpendicular and in-plane directions of the film deposited in oxygen pressure of 0.13 mbar are 2520 Oe and 870 Oe, respectively.  相似文献   

10.
The Sm2Co17-based intermetallic films with additives of Fe, Cu, and Zr have been deposited on Si(1 0 0) substrates by dc magnetron sputtering process. Subsequent thermal treatment and the film thickness are found to have significant contribution to the crystal structure and grain structure, which determines the magnetization reversal process and intrinsic coercivity (HC) of these films. The conventional thermal annealing (CTA) treatment almost failed to crystallize the as-deposited films, leading to a very low HC. Continuous and homogeneous domain walls cannot form in this deteriorated microstructure, so that the pinning mechanism can be excluded. Contrarily, the films with thickness exceeding 0.8 μm treated by rapid recurrent thermal annealing (RRTA) show an improved HC, which is attributed to the observed completed crystallization and compact microstructure. It is suggested that this film structure is responsible for providing continuous and homogeneous domain walls, leading to a magnetization reversal process controlled by domain wall pinning model. In special, the HC of the RRTA-treated film with thickness of 1.8 μm shows a good temperature dependence from 25 to 300 °C, with intrinsic coercivity temperature coefficient β of −0.23%/°C.  相似文献   

11.
Nanocrystalline Co2xNi0.5−xZn0.5−xFe2O4 (x=0−0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.  相似文献   

12.
Microwave-assisted synthesis of SrFe12O19 hexaferrites   总被引:1,自引:0,他引:1  
Ultra-fine and homogeneous SrFe12O19 hexaferrites were synthesized by a microwave-assisted calcination route. The calcined precursors were prepared by a sol-gel auto-combustion method using Fe(NO3)3·9H2O, Sr(NO3)2 and citric acid as starting materials. The structures, powder morphology and magnetic properties of the products were characterized by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer. The results showed that microwaves are helpful to reduce the calcination temperature and shorten the calcination time. The ferrites with saturation magnetization, remanence and intrinsic coercivity of 54.80 emu/g, 29.52 emu/g and 5261 Oe, respectively, were obtained in samples calcined at 800 °C for 80 min.  相似文献   

13.
The temperature and field dependent magnetic properties of melt-spun amorphous Fe89−xyZr11Bx(Co,Mn)y (x=5, 10 and 0≤y≤10) alloys in the temperature range 5-1200 K are reported. The Curie temperature and saturation magnetization at room temperature increase (decrease) almost linearly with Co (Mn) addition. With increasing Co concentration, the room temperature coercivity increases at the rate of 2.26 (0.28) A/m per at% for the x=5 (10) samples. The high-field magnetic susceptibility and local magnetic anisotropy decrease (increases) rapidly with increasing Co (Mn) concentration. The thermomagnetic curves show a marked increase in magnetization above 850 K corresponding to the crystallization of α-FeCo (α-Fe) phase in samples containing Co (Mn). The Curie temperature of the crystalline phase increases (remains same) with increasing Co (Mn) concentration with the formation of α-FeCo (α-Fe). Addition of Co up to 10 at% in Fe-Zr-B improves the room temperature saturation magnetization from 0.56 to 1.2 T, and Curie temperature from 315 to 476 K. Also, the coercivity increases with Co addition from 1.27 to 23.88 A/m for x=5 and from 7.64 to 10.35 A/m for x=10 alloy. The non-collinear spin structures that characterize Fe rich Fe-Zr-B amorphous alloys have been used to describe the observed results.  相似文献   

14.
The structural, microstructural and magnetic properties of nanoferrite NiFe2O4 (NF), CoFe2O4 (CF) and MnFe2O4 (MF) thin films have been studied. The coating solution of these ferrite films was prepared by a chemical synthesis route called sol-gel combined metallo-organic decomposition method. The solution was coated on Si substrate by spin coating and annealed at 700 °C for 3 h. X-ray diffraction pattern has been used to analyze the phase structure and lattice parameters. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to show the nanostructural behavior of these ferrites. The values of average grain's size from SEM are 44, 60 and 74 nm, and from AFM are 46, 61 and 75 nm, respectively, measured for NF, CF and MF ferrites. At room temperature, the values of saturation magnetization, Ms∼50.60, 33.52 and 5.40 emu/cc, and remanent magnetization, Mr∼14.33, 15.50 and 1.10 emu/cc, respectively, are observed for NF, CF and MF. At low temperature measurements of 10 K, the anisotropy of ferromagnetism is observed in these ferrite films. The superparamagnetic/paramagnetic behavior is also confirmed by χ′(T) curves of AC susceptibility by applying DC magnetizing field of 3 Oe. The temperature dependent magnetization measurements show the magnetic phase transition temperature.  相似文献   

15.
Co0.8Fe2.2O4 ferrite thin films have been prepared on Si(0 0 1) substrates by the chemical solution deposition. Structural characteristics indicate all films are single phase with spinel structure and the space group and the mean grain size increases from 8 to 30 nm with the increase of annealing temperature. The magnetic properties of Co0.8Fe2.2O4 thin films are highly dependent on annealing temperature. The sample annealed at 800 °C possesses high saturation magnetization, moderate coercivity and squareness ratio, making it a promising application candidate in high-density record and magneto-optical materials.  相似文献   

16.
Co50Fe50 films with thickness varying from 100 to 500 Å were deposited on a glass substrate by sputtering process, respectively. Two kinds of CoFe films were studied: one was the as-deposited film, and the other the annealed film. The annealing procedure was to keep the films at 400 °C for 5 h in a vacuum of 5×10−6 mbar. From the X-ray study, we find that the as-deposited film prefers the CoFe(1 1 0) orientation. Moreover, the body-centered cubic (bcc) CoFe(1 1 0) line is split into two peaks: one corresponding to the ordered body-centered tetragonal (bct) phase, and the other, the disordered bcc phase. After annealing, the peak intensity of the ordered bct phase becomes much stronger, while that of the disordered bcc phase disappears. The annealing has also caused the ordered CoFe(2 0 0) line to appear. When the amount of the ordered bct phase in Co50Fe50 is increased, the saturation magnetization (Ms) and coercivity (Hc) become larger, but the electrical resistivity (ρ) decreases. From the temperature coefficient of resistance (TCR) measurement, we learn that the bct grains in the CoFe film start to grow at temperature 82 °C.  相似文献   

17.
The effects of magnetic property dependence of the Mn1.56Co0.96Ni0.48O4 (MCN) films on crystallization are investigated in the growth temperature of 450-750 °C. With the growth temperature increase, both the crystalline quality and the grain size improve. The MCN films exhibit paramagnetic to ferromagnetic transition and the paramagnetic parts fit to the modified Curie-Weiss law. The ferromagnetic couplings of the magnetic ions in the MCN films enhance at elevated growth temperature. The saturation magnetization at 5 K increases with increasing growth temperature, but coercive field decreases monotonously. The magnetic properties of the MCN films strongly depend on their microstructures.  相似文献   

18.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

19.
Herein, a discussion of the effect of deposition temperature on the magnetic behavior of Ni0.5Zn0.5Fe2O4 thin films. The thin films were grown by r.f. sputtering technique on (1 0 0) MgO single-crystal substrates at deposition temperatures ranging between 400 and 800 °C. The grain boundary microstructure was analyzed via atomic force microscopy (AFM). AFM images show that grain size (φ∼70-112 nm) increases with increasing deposition temperature, according to a diffusion growth model. From magneto-optical Kerr effect (MOKE) measurements at room temperature, coercive fields, Hc, between 37and 131 Oe were measured. The coercive field, Hc, as a function of grain size, reaches a maximum value of 131 Oe for φ ∼93 nm, while the relative saturation magnetization exhibits a minimum value at this grain size. The behaviors observed were interpreted as the existence of a critical size for the transition from single- to multi-domain regime. The saturation magnetization (21 emu/g<Ms<60 emu/g) was employed to quantify the critical magnetic intergranular correlation length (Lc≈166 nm), where a single-grain to coupled-grain behavior transition occurs. Experimental hysteresis loops were fitted by the Jiles-Atherton model (JAM). The value of the k-parameter of the JAM fitted by means of this model (k/μo∼50 A m2) was correlated to the domain size from the behavior of k, we observed a maximum in the density of defects for the sample with φ∼93 nm.  相似文献   

20.
We report a new synthesis route for preparation of single-domain barium hexaferrite (BaFe12O19) particles with high saturation magnetization. Nitric acid, known as a good oxidizer, is used as a mixing medium during the synthesis. It is shown that formation of BaFe12O19 phase starts at 800 °C, which is considerably lower than the typical ceramic process and develops with increasing temperature. Both magnetization measurements and scanning electron microscope micrographs reveal that the particles are single domain up to 1000 °C at which the highest coercive field of 3.6 kOe was obtained. The best saturation magnetization of ≈60 emu/g at 1.5 T was achieved by sintering for 2 h at 1200 °C. Annealing at temperatures higher than 1000 °C increased the saturation magnetization, on the other hand, decreased the coercive field which was due to the formation of multi-domain particles with larger grain sizes. It is shown that the best sintering to obtain fine particles of BaFe12O19 occurs at temperatures 900-1000 °C. Finally, magnetic interactions between the hard BaFe12O19 phase and impurity phases were investigated using the Stoner-Wohlfarth model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号