首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ligand tetrakis(diphenylphosphinomethyl)methane, tpmm, binds in a η2, η2- bridging mode to square planar platinum(II) or palladium(II) centers to give complexes such as [Pt2Me4(μ-tpmm)] or [Pd2Cl4(μ-tpmm)]. These complexes yielded triflate derivatives [Pt2Me2(OTf)2(μ-tpmm)] or [Pd2(OTf)4(μ-tpmm)], and displacement of triflate by a bipyridine ligand then gave the cationic polymers [{Pt2Me2(μ-LL)(μ-tpmm)}n]2n+ or the cationic network materials [{Pd2(μ-LL)2(μ-tpmm)}n]4n+, LL=4,4’-bipyridine or 1,3-C6H4(CONH-4-C5H4N)2. Ligand tpmm reacts with copper(I) iodide to give [Cu4I4(μ-tpmm)2] or with silver(I) triflate to give [Ag2(OTf)2(μ-tpmm)], which then reacts with LL=1,3-C6H4(CONH-4-C5H4N)2 to give the polymeric complex [{Ag2(μ-LL)(μ-tpmm)}n]2n+. The structure determination of [Cu4I4(μ-tpmm)2] shows that it contains two isomeric forms with the tpmm ligands in either the η2, η2- or η3, η1- bridging mode.  相似文献   

2.
Summary Mixed ligand complexes ofcis-[M(MetH)Cl2] (M=Pd2+ and Pt2+; MetH=methionine) with 2,4-disubstituted pyrimidines were prepared and characterised. Thecis-[Pd(MetH)Cl2] complex reacted with cytosine (2-hydroxy-4-aminopyrimidine), isocytosine (2-amino-4-hydroxypyrimidine) and thiocytosine (2-thio-4-amino-pyrimidine) to form ternary complexes.cis-[Pt(MetH)Cl2] however reacted with cytosine, uracil (2,4-pyrimidine dione or 2,4-dihydroxypyrimidine) to yield the corresponding mixed ligand complexes. The primary ligand, methionine, binds to the metal ion through sulphur and amino nitrogenvia a six membered chelate ring. The secondary ligands (substituted pyrimidines) bind to the Pd2+ or Pt2+ metal ion through the ring nitrogen (N3), as monodentate ligand. Thiocytosine however acts as a bidentate ligand, coordinating to the metal ion through-SH and ring nitrogen (N3). All complexes are 11 electrolytes, except the thiocytosine complex, which is a 12 electrolyte.  相似文献   

3.
The reactions of pyrimidine‐phosphine ligand N‐[(diphenylphosphino)methyl]‐2‐pyrimidinamine ( L ) with various metal salts of PtII, PdII and CuI provide three new halide metal complexes, Pt2Cl4(μ‐L)2·2CH2Cl2 ( 1 ), Pd2Cl4(μ‐L)2 ( 2 ), and [Cu2(μ‐I)2L2]n ( 3 ). Single crystal X‐ray diffraction studies show that complexes 1 and 2 display a similar bimetallic twelve‐membered ring structure, while complex 3 consists of one‐dimensional polymeric chains, which are further connected into a 2‐D supramolecular framework through hydrogen bonds. In the binuclear complexes 1 and 2 , the ligand L serves as a bridge with the N and P as coordination atoms, but in the polymeric complex 3 , both bridging and chelating modes are adopted by the ligand. The spectroscopic properties of complexes 1 ‐ 3 as well as L have been investigated, in which complex 3 exhibits intense photoluminescence originating from intraligand charge transfer (ILCT) π→π* and metal‐to‐ligand charge‐transfer (MLCT) excited states both in acetonitrile solution and solid state, respectively.  相似文献   

4.
Treatment of [M(AMP)Cl2] (M = PtII, PdII; AMP = 2-aminomethylpyridine) with 1 mole of AgX (X = ClO4, BF4, PF6) in dmso yields [M(AMP)(dmso)Cl]X. Single crystal X-ray structure determinations of the PdII and PtII complexes indicate that dmso is S-bondedtrans to the pyridyl ring in both complexes. (2-Aminomethylpyridine)chloro(dimethylsulphoxide-S) palladium(II) tetrafluoroborate.  相似文献   

5.
Summary Methyl methylphenylphosphinate (L) complexes with 3d metal perchlorates were synthesized by interaction of L and metal salt solutions in triethyl orthoformate (61 molar ratio) and characterized by means of spectral, magnetic and conductance studies. In most cases (Mn+ = Cr3+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+), complexes involving 41 L: metal ratios, similar to those obtained with bulky triorganophosphine oxides and neutral phosphonate or phosphate esters, were formed. These complexes contain exclusively terminal L groups and were characterized as monomeric of the types [CrL4(OClO3)2](ClO4), [ML4(OH2)](ClO4)2 (M = Mn or Ni), [ML4(OClO3)](ClO4) (M = Co or Zn) and [CuL4](ClO4)2. In contrast, Fe2+ and Fe3+ perchlorates formed, rather unexpectedly, complexes involving 21 L: Fe ratios. These compounds appear to be binuclear and of the type [(O3ClO)(H2O)2LFeL2FeL(OH2)2(OClO3)](ClO4)n (n=2 for Fe2+; n=4 for Fe3+), containing both terminal and bridging coordinated L ligands. The bridging L groups in the iron complexes seem to be exclusively coordinated through the P=O oxygen, which acts as a bridging group between two adjacent Fe2+ or Fe3+ions, rather than functioning as bidentate bridging O,O-ligands, with both the P=O and methoxy oxygens involved in coordination. Spectral evidence suggests that L is a weaker ligand than triorganophosphine oxides and a stronger ligand than neutral phosphonate and phosphate esters, as anticipated.  相似文献   

6.
The diamagnetic complexes [Pd2(H2L1)Cl4] (I), [Pd2(H2L2)Cl4] (II), and Pd2(H2L3)Cl4(III) with chiral ligands derived from the natural monoterpenoid (R)-(+)-limonene are obtained (H2 L1 is ethylenediamine dioxime, H2L2 is piperazine dioxime, and H2L3 is propylenediamine dioxime). According to X-ray diffraction data, the crystal structures of complexes I and II are composed of binuclear acentric molecules. The coordination polyhedra PdN2Cl2 are trapeziums (squares distorted in a tetrahedral manner) made up of two N atoms of the tetradentate bridging cyclic ligands H2L1 and H2L2 and two Cl atoms. The fragments PdCl2 are trans in the complexes. The 13C and 1H NMR spectra of complexes I and II in CDCl3 also suggest their binuclear structures.  相似文献   

7.
The hydrolysis of the [Pt(dien)H2O]2+ and [Pd(dien)H2O]2+ complexes has been investigated by potentiometry at 298 K, in 0.1 mol dm–3 aqueous NaClO4. Least-squares treatment of the data obtained indicates the formation of mononuclear and -hydroxo-bridged dinuclear complexes with stability constants: log 11 = –6.94 for [Pt(dien)OH]+, log 11 = –7.16 for [Pd(dien)OH]+, and also log 22 = –9.37 for [Pt2(dien)2(OH)2]2+ and log 22 = –10.56 for [Pd2(dien)2(OH)2]2+. At pH values > 5.5, formation of the dimer becomes significant for the PtII complex, and at pH > 6.5 for the PdII complex. These results have been analyzed in relation to the antitumor activity of PtII complexes.  相似文献   

8.
Summary Platinum(II) and palladium(II) chloride complexes with purine, pyrimidine (pyrimid),N-ethylimidazole(N-EtIm) andN-propylimidazole(N-PropIm) ligands have been prepared and characterized by analysis and spectroscopic methods. The compounds have general formula M(L1)(L2)Cl2 where M=PtII, PdII; L1=purine or pyrimid, L2=N-EtIm orN-PropIm, except the complexes Pt(purine)(pyrimid)Cl2 and [Pd(purine)(pyrimid)2Cl]Cl and [Pt(purine)2 (N-propIm)Cl]Cl·2H2O.  相似文献   

9.
Abstract

Adducts of theobromine (tbH) with 3d metal perchlorates (Mn+ = Cr3-. Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2- I here prepared by refluxing mixtures of the Iigand and a metal salt in ethyl acetate-triethyl orthoformate. The new complexes invariably involve 2: 1 molar ratios of tbH to metal ion and are apparently monomeric with terminal tbH ligands binding riaa ring nitrogen (N9 or Nl). The Mn2+, Cu2+ and Zn2- complexes are distorted tetrahedral, involving tuo tbH and two unidentate perchlorato ligands in the first coordination sphere of the metal ion. The remaining metal(II) complexes (Fe, Co, Ni) were obtained as monohydrates. These compounds are pentacoordinated of the [M(tbH)2(OClO3)2(OH2)] type, containing one aqua ligand in addition to the tbH and perchlorato ligands. The Cr3+ and Fe3+ complexes are low-symmetry hexacoordinated, with two tbH ligands. two unidentate and one bidentate chelating perchlorate Iigands.  相似文献   

10.
Summary The synthesis and characterization of new NiII, PdII, PtII and CoIII complexes, with the BF inf2 sup+ -bridged,bis(-di-oximato) ligands are described. The initially formed six-coordinate hydrogen-bonded macrocycles, were used as metal templates to prepare the corresponding BF inf2 sup+ - capped macrocycles. The complexes were characterized by1H-n.m.r. and i.r. spectroscopy, and by elemental analysis.  相似文献   

11.
The self-condensation of 5-amino-3-methyl-1-phenylpyrazole-4-carbaldehyde (AMPC) in the presence of PdII and PtII ions yields the PdII and PtII complexes, [M(TAAP)]Cl2, of the fully cyclized tetradentate macrocyclic ligand tetrapyrazolo[1,5,9,13]tetraazacyclohexadecine, (TAAP). Metathetical displacement of the chloride has led to isolation a series of complexes of the type [M(TAAP)]X2, (X=I, ClO4 and BF4), the formulation of which is supported by elemental analysis, molar conductance and magnetic susceptibility measurements, and i.r. and u.v.–vis. spectra. Spectroscopic and other analytical results reveal that the complexes have square-planar stereochemistry with four donor nitrogen atoms coordinated to the metal ion in a planar array. The reaction which produces this new cyclic ligand is assumed to include the metal ion acting as a template for the condensation. Thus the probable mechanistic implications for the coordination template hypothesis are discussed to explain the formation of these new macrocyclic chelate compounds. Both PdII and PtII complexes appear to be sensitive to nucleophilic attack at the methine carbon, which is reversible upon acidification. The reaction of [Pt(TAAP)]2+ or [Pd(TAAP)]2+ with MeO- or EtO- ions results in the formation of partially solvolysed inner complexes containing two ionized -amino ether functions, stabilized by the macrocyclic chelate ring. Attempts to prepare discrete -carbinolamine derivatives were unsuccessful.  相似文献   

12.
Summary Ni(LH)3LX complexes (LH=hypoxanthine or xanthine; X=Cl, Br or I) are formed by boiling under reflux 2:1 molar mixtures of LH and hydrated NiX2 in HC(OEt)3–MeCO2Et. The new complexes appear to be linear chain-like polymers, characterized by bidentate monoanionic L ligands singly bidging between adjacent Ni2+ ions. A coordination number six is attained by the presence of three terminal unidentate LH and one X ligand in the first coordination sphere of each Ni2+ ion. The neutral LH and monoanionic L ligands bind exclusivelyvia ring nitrogens to NiII. The probable binding sites of the uni- and bi-dentate hypoxanthine and ligands in the new complexes are discussed.Presented in part at the 3rd Chem. Congress of North America (LH=xanthine) and the XXVI ICCC (LH=hypoxanthine), see refs. 1 and 2, respectively.  相似文献   

13.
8‐Hydroxyquinolium chloroacetate ( L1 ) was synthesized and characterized. The results suggest that L1 loses ethyl chloroacetate ion on coordination at low pH (2–5) and consequently it behaves as 8‐hydoxyquinoline ( L2 ). Cu2+, Co2+, Pt4+, Pd2+, Au3+, Ag+ and Nd3+ complexes derived from L2 have been synthesized and characterized using spectral, magnetic and thermal measurements. L2 acts as a neutral bidentate ligand in the case of Cu2+, Co2+, Pt4+, Pd2+ and Nd3+ complexes and as a mononegative bidentate ligand in the case of Au3+ and Ag+ complexes. Octahedral geometry is proposed for Cu2+, Co2+ (grey) and Pt4+ complexes and square‐planar for Co2+ (green), Pd2+ and Au3+ complexes. The bond lengths, bond angles, chemical reactivities, binding energies and dipole moments for all compounds were evaluated using density functional theory and molecular electrostatic potential for L1 . Superoxide dismutase radical scavenger‐like activity and cytotoxic activity of the complexes towards HepG2 liver cancer cells has been screened. Cytotoxicity measurements show that Ag+ and Pd2+ complexes have the highest cytotoxic activity while L1 , Cu2+, Co2+ (grey), Co2+ (green), Pt4+ and Nd3+ complexes have no cytotoxic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Solvation and complexation of Cu(II), Ni(II), and Co(II) with adipic acid dihydrazide (L) in aqueous and aqueous-ethanol solutions (ethanol mole fraction 0.07–0.68) were studied by spectrophotometry. The formation constants of the species M(LH)3+, ML2+, M2L4+ (μ = Cu2+, Ni2+, Co2+), and also M2L 2 4+ and ML 2 2+ (μ = Cu2+, Ni2+) were determined. With Cu(II), the complexes Cu(LH) 2 4+ , CuL(LH)3+, and Cu2L(LH)5+ were also detected and characterized. Evidence is given for the hydrazide coordination mode: tridentate in ML2+, bidentate in M(LH)3+ and ML 2 2+ , and tetradentate in M2L4+ and M2L 2 4+ . The ligand exchange reactions involving CuL2+, Cu(LH)3+, Cu(LH) 2 4+ , CuL(LH)3+, CuL 2 2+ , and Cu2L(LH)5+ in aqueous solutions of Cu(II) were revealed and kinetically characterized by nuclear magnetic relaxation. The heretofore unknown rate constants of formation of these complexes were calculated from the thermodynamic and kinetic parameters. Factors controlling the rate constants of the complex formation and chemical exchange are discussed.  相似文献   

15.
Four cyanide-bridged heterometallic complexes {[CuPb(L 1 )][Fe III (bpb)(CN) 2 ]} 2 ·(ClO 4 ) 2 ·2H 2 O·2CH 3 CN (1), {[CuPb(L 1 )] 2 [Fe II (CN) 6 ](H 2 O) 2 }·10H 2 O (2), {[Cu 2 (L 2 )][Fe III (bpb)(CN) 2 ] 2 }·2H 2 O·2CH 3 OH (3) and {[Cu 2 (L 2 )] 3 [Fe III (CN) 6 ] 2 (H 2 O) 2 }·10H 2 O (4) have been synthesized by treating K[Fe III (bpb)(CN) 2 ] [bpb 2-=1,2-bis(pyridine-2-carboxamido)benzenate] and K 3 [Fe III (CN)] 6 with dinuclear compartmental macrocyclic Schiff-base complexes [CuPb(L 1 )] (ClO 4 ) 2 or [Cu 2 (L 2 )]·(ClO 4 ) 2 , in which H 2 L 1 was derived from 2,6-diformyl-4-methyl-phenol, ethylenediamine, and diethylenetriamine in the molar ratio of 2:1:1 and H 2 L 2 from 2,6-diformyl-4-methyl-phenol and propylenediamine in the molar ratio of 1:1. Single crystal X-ray diffraction analysis reveals that compound 1 displays a cyclic hexanuclear heterotrimetallic molecular structure with alternating [FeⅢ (bpb)(CN) 2 ]- and [CuPb(L 1 )] 2+ units. Complex 2 is of a neutral dumb-bell-type pentanuclear molecular configuration consisting of one [Fe(CN)6] 4- anion sandwiched in two [CuPu(L 1 )] 2+ cations, and the pentanuclear moieties are further connected by the hydrogen bonding to give a 2D supramolecular framework. Heterobimetallic complex 3 is a tetranuclear molecule composed of a centrosymmetric [Cu 2 (L2)] 2+ segment and two terminal cyanide-containing blocks [FeⅢ (bpb)(CN)2 ]- . Octanuclear compound 4 is built from two [Fe(CN)6]3- anions sandwiched in the three [Cu 2 L 2 ] 2+ cations. Investigation of their magnetic properties reveals the overall antiferromagnetic behavior in the series of complexes except 2.  相似文献   

16.
Summary The following copper(I) complexes of 4,6-dimethylpyrimidine-2(1H)-thione (HL), its protonated cation (H2L+) and deprotonated anion (L) have been prepared: CuL, Cu(HL)X (X = Cl, Br or I), Cu(HL)2X (X = C1 or Br), Cu2(HL)3Br2, Cu(H2L)X2 (X = Cl or Br), Cu3(HL)2LA2 (A = ClO4 or BF4 ). The i.r. spectra show that in all the HL and L complexes and in the Cu(H2L)Br2 complex, the ligands are S, N coordinated to the metal ion, while in Cu(H2L)Cl2 only the thiocarbonylic sulphur is coordinated, probably bridging two copper(I) atoms. Thev(CuN) (288–317 cm–1 ) andv(CuS) (191–225 cm–1 ) have uniform frequency values in all the complexes. The halide ions are, in all their complexes, wholly or in part coordinated giving twov(CuX) bands which may indicate an asymmetrical Cu-X Cu halide bridging bond.Author to whom all correspondence should be directed.  相似文献   

17.
Summary The synthesis and properties of cationic complexes of general formula [ML2{CH2(Ph2PE)2}]BF4, where M = PdII and RhII, L2 = 3-MeC3H4, {P(O)(OR)2}2H (R = Me, Et), COD, (CO)2, (CO)PPh3 and E = S, Se are described. The methylene proton of the coordinated phosphine sulphide or selenide ligands react with strong bases as BuLi in n-hexane or NaH in THF, to give neutral complexes of the type [ML2{CH(Ph2PE)2}], where M = PdII, RhI; L2 = 3-MeC3H4, COD and E = S, Se. The complexes have been characterized by elemental analyses, molar conductivities, i.r., 1H n.m.r. and 31P{1H} n.m.r. spectroscopy.  相似文献   

18.
The binuclear complexes (Cp)(2-RC3H4)M2L2 are formed either on reaction of equimolar amounts of CpM(2-RC3H4) and L (where L is a tertiary phosphine, phosphite or arsine) or by a “1 + 1” addition of CpM(2-RC3H4) and ML2. The NMR data suggest that in all complexes the cyclopentadienyl and allyl ligands are analogously coordinated to both metal atoms and thus sandwich the LMML unit. CpPd(2-ClC3H4) reacts with L to give CpPd(L)Cl and allene. The reaction of CpPd(2-ClC3H4) and PdL2 (L = P(i-Pr)3) leads, probably via the intermediate (Cp)(Cl)Pd2L2, to the unsymmetrical binuclear complex Cp(L)PdPd(L)(2-ClC3H4) which isomerizes on heating to give (2-CpC3H4)(Cl)Pd2L2. The reactions of the (PdPd)-complexes (Cp)(2-RC3H4)Pd2L2 with electrophilic and nucleophilic reagents proceed predominantly by cleavage of the metal-to-metal bond. With I2, HCl and MeI a mixture of mononuclear cyclopentadienylpalladium and allylpalladium complexes is always formed. In the reaction of (Cp)(2-MeC3H4)Pd2L2 with HBr, however, the formation of binuclear complexes with bromide as bridging ligand occurs. An exchange of L is only observed in the reaction of (Cp)(2-MeC3H4)Pd2L2 with trimethylphosphine.  相似文献   

19.
Bibracchial lariat ethers L3 and L4, derived from the condensation of N,N′-bis(2-aminobenzyl)-1,10-diaza-15-crown-5 or N,N′-bis(2-aminobenzyl)-4,13-diaza-18-crown-6 with salicylaldehyde, form binuclear complexes with Co(II), Ni(II), Cu(II) and Zn(II). Our studies show that the different denticity and crown moiety size of the two related receptors give rise to important differences on the structures of the corresponding complexes. Single crystal X-ray diffraction analysis shows that the [Ni2(L3)(H2O)2]2+ and [Cu2(L3)(NO3)]+ complexes constitute a rare example in which an oxygen atom of the crown moiety is bridging the two six coordinate metal ions. In contrast, none of the oxygen atoms of the crown moiety is acting as a bridging donor atom in the [Co2(L4)(CH3CN)2]2+, [Cu2(L4)]2+ and [Zn2(L4)]2+ complexes. This is attributed to the larger size the crown moiety and the higher denticity of L4 compared to L3. In [Co2(L4)(CH3CN)2]2+ the metal ions show a distorted octahedral coordination, while in the Cu(II) and Zn(II) analogues the metal ions are five-coordinated in a distorted trigonal bipyramidal environment. In [Cu2(L3)(NO3)]+ the coordinated nitrate anion acts as a bidentate bridging ligand, which results in the formation of a 1D coordination polymer.  相似文献   

20.
Three new Pd(II) complexes of Schiff base ligands, namely, [Pd4(L1)4] (1), [Pd2(L2)2Cl2] (2) and [Pd(L3)2Cl2] (3) [HL 1 ?=?N-(benzylidene)-2-aminophenol; L 2 ?=?N-(2,4-dichlorobenzylidene)-2,6-diethylbenzenamine, L 3 ?=?4-(2,4-dichlorobenzylide-neamino)phenol] have been synthesized using solvothermal methods and characterized by elemental analysis, spectroscopy and single crystal X-ray diffraction. The crystal structures of the free ligands were also determined. The ??-oxygen-bridged tetranuclear cyclometallated Pd(II) complex (1) contains four nearly planar units, in which PdII is four-coordinate. Complex 2 is a ??-chloro-bridged dinuclear cyclometallated Pd(II) complex, whereas complex 3 is mononuclear. The Heck reactions of bromobenzene with acrylic acid catalyzed by complexes 1?C3 have also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号