首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study attempted to develop a detection system for lens sag of the microlens array in real time using an optical automatic inspection framework to link with the computer through a camera. An image processing technique was applied to detect the spherical microlens array, and then, the results were compared.The system light source used laser light and applied CCD to collocate with the microscope array to form an automatic optical detection system for an optical interferometric microscope. It applied the principle of the Fizeau interferometer, illuminated the surface of microlens array, and formed the phase difference required by the interference of two lights through the laser light reflected by the reference plane and the surface of the microlens array, thus, forming an interference fringe.When the sag of the microlens was much longer than the wave length of the detection light source, the fringe would be densely distributed, thus, only a few central fringes were clear in the microscopic image. An image processing method was used to search the center of the interference fringe and a creative algorithm was utilized to obtain the lens sag of the microlens. As proved by the experiment, lens sag of 4 microlens arrays were detected in real time, with a minimum detection error of 0.08 μm, and a maximum detection error of 4 μm (error value 1 ~ 9%), according to different sample processes. This system featured a simple structure and is applicable to non-contact detection and detection of different-sized microlens arrays.  相似文献   

2.
Silicon microlenses are a very important tool for coupling terahertz (THz) radiation into antennas and detectors in integrated circuits. They can be used in a large array structures at this frequency range reducing considerably the crosstalk between the pixels. Drops of photoresist have been deposited and their shape transferred into the silicon by means of a Reactive Ion Etching (RIE) process. Large silicon lenses with a few mm diameter (between 1.5 and 4.5 mm) and hundreds of μm height (between 50 and 350 μm) have been fabricated. The surface of such lenses has been characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), resulting in a surface roughness of about ∼3 μm, good enough for any THz application. The beam profile at the focal plane of such lenses has been measured at a wavelength of 10.6 μm using a tomographic knife-edge technique and a CO2 laser.  相似文献   

3.
In this work, a design study of a three field-of-view (FOV) optical system for 8–12 μm imaging using a 288×4 focal plane array detector is presented. The detector pixel size is 25 μm×28 μm. The f/# of the detector is 1.76. In order to switch the FOVs, three different optical configurations are superimposed and all three configurations are optimized. The narrow and medium FOV switching is based on movement of the second negative lens of the afocal system, whereas the wide FOV is selected by inserting a mirror between the 4th and 5th lenses of the afocal system. By inserting a switching mirror, the objective part of the first configuration is blocked out; nevertheless the afocal of the wide FOV is activated. The imager part of the layout is common for all FOVs. Diffractive and aspheric surfaces are utilized to control chromatic and all other kinds of aberrations, reducing the total lens number. The final optical designs, together with their modulation transfer function (MTF) plots, are illustrated, exhibiting excellent performance in all three FOVs. More specifically, the paper emphasizes how the displacement of compensating lenses effect the MTF of the system and how automatic movements of the lenses are used to eliminate the defocusing problem under changing environmental conditions.  相似文献   

4.
《Radiation measurements》2009,44(2):173-175
This work presents a novel method for determining bulk etch rate of CR-39 during prolonged etching by masking the surface with a ferrofluidic film held in position by magnetostatic forces. The CR-39 etching conditions were 6.25 M NaOH solution for 24 h at temperatures ranging from 50 to 80 °C. After etching, the heights of the resulting un-etched plateaus were measured using a Talyscan 150 profilometer. The removed layer thicknesses ranged from 12 to 85 μm, giving corresponding bulk etch rates in the range 0.5–3.54 μm/h.  相似文献   

5.
We report a novel utilization of periodic arrays of carbon nanotubes in the realization of diffractive photonic crystal lenses. Carbon nanotube arrays with nanoscale dimensions (lattice constant 400 nm and tube radius 50 nm) displayed a negative refractive index in the optical regime where the wavelength is of the order of array spacing. A detailed computational analysis of band gaps and optical transmission through the nanotubes based planar, convex and concave shaped lenses was performed. Due to the negative-index these lenses behaved in an opposite fashion compared to their conventional counter parts. A plano-concave lens was established and numerically tested, displaying ultra-small focal length of 1.5 μm (~2.3 λ) and a near diffraction-limited spot size of 400 nm (~0.61 λ).  相似文献   

6.
The electroluminescence in the range of 3–4.5 μm and 6–10 μm from a Sb-based type II interband quantum cascade structure is reported. We measured the light emission from the top surface of the LED device with different grating structures. We used different etch depths for the grating formation. The light–current–voltage (LIV) characteristics measured at both room and cryogenic temperatures show that the device with 45° angle grating and 1.0 μm deep etch onto the GaSb surface has the highest emission power.  相似文献   

7.
《Solid State Communications》2003,125(3-4):185-188
High-density (∼108/cm2), uniformly aligned silicon nanotip arrays are synthesized by a plasma-assisted hot-filament chemical vapor deposition process using mixed gases composed of hydrogen, nitrogen and methane. The silicon nanotips grow along 〈112〉, and are coated in situ with a ∼3 nm thick amorphous carbon film by increasing the methane concentration in the source gases. In comparison to the uncoated silicon nanotips arrays, the coated tips have enhanced field emission properties with a turn-on field of 1.6 V/μm (for 10 μA/cm2) and threshold field of 3 V/μm (for 10 mA/cm2), suggesting their potential applications for flat panel displays.  相似文献   

8.
Future heterojunction InAs/GaSb superlattice (SL) detector devices in the long-wavelength infrared regime (LWIR, 8–12 μm) require an accurate bandstructure model and a successful surface passivation. In this study, we have validated the superlattice empirical pseudopotential method developed by Dente and Tilton over a wide range of bandgap energies. Furthermore, dark current data for a novel dielectric surface passivation for LWIR devices is presented. Next, we present a technique for high-resolution, full-wafer mapping of etch pit densities on commercial (1 0 0) GaSb substrates, which allows to study the local correlation between threading dislocations in the substrate and the electro-optical pixel performance. Finally, recent performance data for 384 × 288 dual-color InAs/GaSb superlattice imagers for the mid-wavelength infrared (MWR, 3–5 μm) is given.  相似文献   

9.
An ultrasmall silicon periodic dielectric waveguides-based multimode interference all-optical logic gate has been proposed. The device consists of three 205 nm wide single-mode input waveguides, a 1.1 μm wide and 5.5 μm long multimode interference waveguide, and three 205 nm wide single-mode output waveguides. The total length and width of the device are 13.7 μm and 3.2 μm, respectively. By changing the states of the input optical signals and/or control signals launched into the device, multifunctional logic functions including OR, NAND, NOR, and NOT gates are performed, and each logic function can be realized at a specific output waveguide in accordance with the launched control signals. The ultrasmall multifunctional logic device has potential applications in high density photonic integrated circuits.  相似文献   

10.
A monolithic silicon CMOS optoelectronic integrated circuit (OEIC) is designed and fabricated using standard 0.35-μm CMOS technology. This OEIC monolithically integrates light emitting diode (LED), silicon dioxide waveguide, photodetector and receiver circuit on a single silicon chip. The silicon LED operates in reverse breakdown mode and can emit light at 8.5 V. The output optical power is 31.2 nW under 9.8 V reverse bias. The measured spectrum of LED showed two peaks at 760 nm and 810 nm, respectively. The waveguide is composed of silicon dioxide/metal multiple layers. The responsivity of the n-well/p-substrate diode photodetector is 0.42 A/W and the dark current is 7.8 pA. The LED-emitted light transmits through the waveguide and can be detected by the photodetector. Experimental results show that on-chip optical interconnects are achieved by standard CMOS technology successfully.  相似文献   

11.
In this work a waveguide-integrated 2 × 2 switch operating at the infrared communication wavelength of 1550 nm is proposed and theoretically discussed. The device is based on the total internal reflection (TIR) phenomenon and the thermo-optic effect (TOE) in hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). It takes advantage of a bandgap-engineered a-Si:H layer to explore the properties of an optical interface between materials showing similar refractive indexes but different thermo-optic coefficients. In particular, thanks to modern plasma-enhanced chemical vapour deposition (PECVD) techniques, the refractive index of the amorphous film can be properly tailored to match that of c-Si at a given temperature. TIR may be therefore achieved at the interface by acting on the temperature. The device is integrated in a 4 μm-wide and 3 μm-thick single-mode rib waveguide. The substrate is a silicon-on-insulator (SOI) wafer with an oxide thickness of 500 nm. We calculated an output crosstalk always better than 24 dB and insertion losses as low as 3.5 dB.  相似文献   

12.
This study used ultraviolet laser to perform the microcrystalline silicon thin film solar cell isolation scribing process, and applied the Taguchi method and an L18 orthogonal array to plan the experiment. The isolation scribing materials included ZnO:Al, AZO transparent conductive film with a thickness of 200 nm, microcrystalline silicon thin film at 38% crystallinity and of thickness of 500 nm, and the aluminum back contact layer with a thickness of 300 nm. The main objective was to ensure the success of isolation scribing. After laser scribing isolation, using the minimum scribing line width, the flattest trough bottom, and the minimum processing edge surface bumps as the quality characteristics, this study performed main effect analysis and applied the ANOVA (analysis of variance) theory of the Taguchi method to identify the single quality optimal parameter. It then employed the hierarchical structure of the AHP (analytic hierarchy process) theory to establish the positive contrast matrix. After consistency verification, global weight calculation, and priority sequencing, the optimal multi-attribute parameters were obtained. Finally, the experimental results were verified by a Taguchi confirmation experiment and confidence interval calculation. The minimum scribing line width of AZO (200 nm) was 45.6 μm, the minimum scribing line width of the microcrystalline silicon (at 38% crystallinity) was 50.63 μm and the minimum line width of the aluminum thin film (300 nm) was 30.96 μm. The confirmation experiment results were within the 95% confidence interval, verifying that using ultraviolet laser in the isolation scribing process for microcrystalline silicon thin film solar cell has high reproducibility.  相似文献   

13.
Silicon microspheres are transparent in the near-infrared telecommunication bands and can be used for electrophotonic integration. We have experimentally observed blue shifts in resonance wavelengths of an electrically driven silicon microsphere of 500 μm in radius, in the near-infrared. We have used a distributed feed back (DFB) laser operating at 1475 nm, and applied electrical potential differences up to 9 V to the silicon microsphere. We have observed blue shifts in the resonance wavelengths up to 0.05 nm, which corresponds to a change in the refractive index of 10−4.  相似文献   

14.
Vanadium dioxide has excellent phase transition characteristic. Before or after phase transition, its optical, electrical, magnetic characteristic hangs hugely. It has a wide application prospect in many areas. Now, the light which can make vanadium dioxide come to pass photoinduced phase transition range from soft X-ray to medium infrared light (6.9 μm, 180 meV). However, whether 10.6 μm (117 meV) long wave infrared light can make vanadium dioxide generate photoinduced phase transition has been not studied. In this paper, we researched the response characteristic of vanadium dioxide excited by 10.6 μm infrared light. We prepared the vanadium dioxide and test the changes of vanadium dioxide thin film’s transmittance to 632.8 nm infrared light when the thin film is irradiate by CO2 laser. We also test the resistivity of vanadium dioxide. Excluding the effect of thermal induced phase transition, we find that the transmittance of vanadium dioxide thin film to 632.8 nm light and resistivity both changes when irradiating by 10.6 μm laser. This indicates that 10.6 μm infrared light can make the vanadium dioxide come to pass photoinduced phase transition. The finding makes vanadium has a potential application in recording the long-wave infrared hologram and making infrared detector with high resolution.  相似文献   

15.
We report a high index contrast erbium doped tantalum pentoxide waveguide amplifier. 2.3 cm long waveguides with erbium concentration of 2.7 × 1020 cm? 3 were fabricated by magnetron sputtering of Er-doped tantalum pentoxide on oxidised silicon substrates and Ar-ion milling with photolithographically defined mask. A net on-chip optical gain of ~ 2.25 dB/cm at 1531.5 nm was achieved with 20 mW of pump power at 977 nm launched into the waveguide. The pump threshold for transparency was 4.5 mW.  相似文献   

16.
In this paper we report on the development of small-diameter lenses in soft glass with transmission in infrared till 5 μm using hot embossing method. A fused silica stamps and in-house synthesized tungsten–tellurium–niobate and lead–bismuth–galate glasses are used for replication. Optimization process of hot embossing is presented. Optical properties of replicated lenses were characterized. Resolution of 50 lp/mm is obtained.  相似文献   

17.
Xi Bao  Feng Liu  Xiaoli Zhou 《Optik》2012,123(16):1474-1477
Prototype devices based on black silicon have been fabricated by microstructuring 250 μm thick multicrystalline n doped silicon wafers using femtosecond pulsed laser in ambient gas of SF6 to measure its photovoltaic properties. The enhanced optical absorption of black silicon extends across the visible region and all the black silicons prepared in this work exhibit enhanced optical absorption close to 90% from 300 nm to 800 nm. The highest open-circuit voltage (Voc) and short-circuit current (Isc) under the illumination of He–Ne continuous laser at 632.8 nm were measured to be 53.3 mV and 0.11 mA, respectively at a maximum power conversion efficiency of 1.44%. Upon excitation with He–Ne continuous laser at 632.8 nm, external quantum efficiency (EQE) of black silicon as high as 112.9% has also been observed. Development of black silicon for photovoltaic purposes could open up a new perspective in achieving high efficient silicon-based solar cell by means of the enhanced optical absorption in the visible region. The current–voltage characteristic and photo responsivity of these prototype devices fabricated with microstructured silicon were also investigated.  相似文献   

18.
β-NaYF4:Er3+(10%) microprisms, synthesized using a hydrothermal method, were applied to the back of a thin film hydrogenated amorphous silicon (a-Si:H) solar cells to investigate response to sub-band gap near-infrared irradiation. Currents of 0.3 μA and 0.01 μA were measured during single-illumination with 60 mW (80 mW/cm2) 980 nm and 1560 nm diode lasers, respectively, due to frequency upconversion (UC). Under co-excitation by 60 mW 980 nm and 100 mW 1560 nm lasers, a current improvement to 0.54 μA was obtained, resulting from enhancements in red emission. The finding indicates that co-excitation with multiple wavelengths accessible to UC materials is very effective in enhancing the efficiency of solar cells.  相似文献   

19.
The performance of a CMOS-compatible electro-optic Mach-Zehnder plasmonic modulator is investigated using electromagnetic and carrier transport simulations. Each arm of the Mach-Zehnder device comprises a metal–insulator–semiconductor–insulator–metal (MISIM) structure on a buried oxide substrate. Quantum mechanical effects at the oxide/semiconductor interfaces were considered in the calculation of electron density profiles across the structure, in order to determine the refractive index distribution and its dependence on applied bias. This information was used in finite element simulations of the electromagnetic modes within the MISIM structure in order to determine the Mach-Zehnder arm lengths required to achieve destructive interference and the corresponding propagation loss incurred by the device. Both inversion and accumulation mode devices were investigated, and the layer thicknesses and height were adjusted to optimise the device performance. A device loss of <8 dB is predicted for a MISIM structure with a 25 nm thick silicon layer, for which the device length is <3 μm, and <5 dB loss is predicted for the limiting case of a 5 nm thick silicon layer in a 1.2 μm long device: in both cases, the maximum operating voltage is 7.5 V.  相似文献   

20.
We report on the design of amorphous silicon solar cells with the periodic grating structures. It is a combination of an anti-reflection structure and the metallic reflection grating. Optical coupling and light trapping in thin-film solar cells are studied numerically using the Rigorous Coupled Wave Analysis enhanced by the Modal Transmission Line theory. The impact of the structure parameters of the gratings is investigated. The results revealed that within the incident angles of ? 40° to + 40° the reflectivity of the cell with a period of 0.5 μm, a filling factor of 0.1 and a groove depth of 0.4 μm is 4%–22.7% in the wavelength range of 0.3–0.6 μm and 1%–20.8% in the wavelength range of 0.6–0.84 μm, the absorption enhancement of the a-Si layer is 0.4%–10.8% and 20%–385%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号