首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
X-ray mapping using energy dispersive spectroscopy or wavelength dispersive spectroscopy is a very popular characterisation tool for determining the elemental distribution in materials. Furthermore, quantitative X-ray mapping has become a very powerful technique enabling reliable quantitative results that can be an order of magnitude better than traditional analysis. Quantitative X-ray mapping is also far superior to regions of interest X-ray maps where low levels of an element or elemental overlaps are present. The one major drawback with X-ray mapping is the time required to obtain a high resolution X-ray map with good statistics at low levels of concentration. The use of multi-detectors, and just developed dual turret detectors for X-ray mapping, allows improvement in performance at low levels without compromising quantification quality and precision of traces, even in the presence of overlaps. However, for quantitative X-ray mapping to work properly, the characteristics of each detector must be accurately determined so that the final quantification of the individual detectors can be summed. To accomplish this effectively, the full spectrum at each pixel for each energy dispersive detector should be saved. As a final check for consistency between detectors, a technique was developed that involves assigning a different red-green-blue colour for each detector for the same element. By doing this, when we combine the three maps of the same element, we should obtain a grey scale map that indicates total correlation between the three detectors at the most critical final stage of quantification. To reduce contrast noise and further improve the quality of quantitative X-ray mapping images, a filter referred to as a “speckle filter” has been developed that allows the eye to see a more correct elemental concentration relationship.  相似文献   

2.
In this study, the quantification of decarburization induced during the annealing process for the fabrication of electrical steels was carried out using glow discharge optical emission spectroscopy (GD‐OES). Different calibration methods, based on external and internal standard references, were examined to optimize the quantification of carbon concentration. Accurate calibration curves for carbon at low concentration ranges were achieved by the use of carbon intensity calibrated by the internal reference, i.e. iron intensity line. This methodology was found to be beneficial for long GD‐OES measurements, providing a better correction over changes in the overall emission intensity with the sputter time. The good depth resolution obtained by the GD‐OES technique enabled the identification of specific features in the steel microstructure related to carbide coarseness. Quantitative carbon concentration profiles were obtained by GD‐OES to evaluate the decarburization effect on the microstructure of low‐carbon steels considering different initial microstructures. The effect of the spatial distribution of carbides in these microstructures on the decarburization kinetics was also studied. Through quantitative determination of carbon elemental profiles by GD‐OES, information about the morphology of the cementite in the microstructure and its development in relation to decarburization was acquired. The depth of decarburization can accurately be determined. On the basis of the global results, GD‐OES thus emerged as being a fast and reliable technique for a better understanding of decarburization kinetics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The performance of a laser ablation mass analyser designed for in-situ exploration of the chemical composition of planetary surfaces has been investigated. The instrument measures the elemental and isotopic composition of raw solid materials with high spatial resolution. The initial studies were performed on NIST standard materials using IR laser irradiance (< 1 GW cm−2) at which a high temporal stability of ion formation and sufficiently low sample consumption was achieved. Measurements of highly averaged spectra could be performed with typical mass resolution of mm ≈ 600 in an effective dynamic range spanning seven decades. Sensitive detection of several trace elements can be achieved at the ~ ppm level and lower. The isotopic composition is usually reproduced with 1% accuracy, implying good performance of the instrument for quantitative analysis of the isotopic fractionation effects caused by natural processes. Using the IR laser, significant elemental fractionation effects were observed for light elements and elements with a high ionization potential. Several diatomic clusters of major and minor elements could also be measured, and sometimes these interfere with the detection of trace elements at the same nominal mass. The potential of the mass analyser for application to sensitive detection of elements and their isotopes in realistic samples is exemplified by measurements of minerals. The high resolution and large dynamic range of the spectra makes detection limits of ~100 ppb possible.  相似文献   

4.
In 2000, micro-beam scanning particle induced X-ray emission (PIXE) analysis system was installed in NIRS. This system provides the ability of multi-elemental mapping on maximum 2.5 mm×2.5 mm area in a spatial resolution of about 1 μm with quadrupole triplet magnets and a scanning coil. The estimated beam size on good tuning was 0.40×0.65 μm2, that is one of the best capacity of micro-beam scanning PIXE system in the world. The performance was tested using small biological samples such as fish scale, pollen and small fish eye. Fine elemental maps were obtained in the samples of about 30 μm to a few mm size in the special resolution of about 1 μm. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Single crystals of new nitridosilicates and nitridoaluminosilicates with excellent R values in X-ray investigations were analysed quantitatively using 30 to 60 μm single-spot LA-ICP-MS. Significant discrepancies between expected and measured chemical composition could not be explained by the crystallographic data. High spatial resolution analysis using electron probe microanalysis (EPMA, 10 μm) leads to the discovery of inhomogeneities in the crystalline material. The application of standard single-spot LA-ICP-MS with a spatial resolution of 30 to 60 μm is not suitable for the analysis of these crystals as the existing inhomogeneities dominate and alter the determined concentrations. However, owing to the better detection capabilities, a scanning LA-ICP-MS procedure enables a more representative analysis of single crystals of Ca5Si2Al2N8 than single-spot LA-ICP-MS as a result of a larger sampling volume. It is highly likely that these impurities consist of amorphous, vitreous phases as powder diffraction X-ray data indicates the existence of a significant fraction of an X-ray amorphous material besides crystalline silicates. These microdomains contain less aluminium, silicon and calcium or are nearly free of aluminium, which explains the detected discrepancies in the chemical composition.  相似文献   

6.
 A common problem in depth profile measurement is the calibration of the depth scale. The new technique of sputter assisted electron probe microanalysis offers the possibility of calculating the composition as well as the depth scale solely from the acquired X-ray intensity data without further information, e.g. sputter rates. To achieve a depth resolution that is smaller than the depth of information of the electron probe, i.e. 0.1–1 μm, special deconvolution algorithms must be applied to the acquired data. To assess the capabilities of this new technique it was applied to a Ti/Al/Ti multilayer on Si under different measurement conditions. Quantitative depth profiles were obtained by application of a deconvolution algorithm based on maximum entropy analysis. By comparison of these profiles with AES depth profiles and AFM roughness measurements, it was shown that the limiting factor to the achievable depth resolution is the occurrence of surface roughening induced by the sputtering process rather than the relatively large depth of information of the electron probe. We conclude that for certain applications sputter-assisted EPMA can be regarded as a valid depth profiling technique with a depth resolution in the nm range.  相似文献   

7.
 Superhard nanocomposite coatings of different composition in the quasi-binary system TiN–TiB2 were deposited onto stainless steel sheets by means of unbalanced DC magnetron co-sputtering using segmented TiN/TiB2 targets. The chemistry and microstructure of a TiB0.6N0.7 coating was investigated using X-ray and electron diffraction, photoelectron spectroscopy, energy-filtering transmission electron microscopy, and electron energy-loss spectrometry. High resolution elemental mapping of the elements Ti, B, N, and O with energy-filtering TEM reveals a homogeneous distribution on the nanometer scale. X-Ray and electron diffraction exhibit only TiN crystallites of nanometer size, but no information on the boron-rich phase. The near-edge fine structures of the BK and NK ionization edges in the EELS spectra of the Ti–B–N coatings were used to derive information on the phases by comparing the edges with those of reference compounds. It was found that the TiN nanocrystals occur together with TiO x particles; the grains are embedded in a strongly disordered or quasi-amorphous matrix consisting mainly of TiB2 particles and, near the steel substrate, also boron oxide (B2O3).  相似文献   

8.
Gamma-ray transmission tomography and neutron induced gamma-ray emission tomography (NIGET) where delayed gamma-rays from an activated sample are detected in a tomographic mode, were used to investigate the elemental composition and distribution of a salivary gland stone, nondestructively. Transmission tomography provided information about the distribution of the linear photon attenuation coefficient in the object and showed clearly the two regions of inorganic and organic material in a number of sections through it. In addition it was possible to derive from the data the concentration of Ca and the ratio of Ca to P in the stone. By using NIGET it was shown that the concentration of Ca and Na in the object can be mapped and quantitative measurements of these elements could be obtained in any particular location within the salivary gland stone. The spatial resolution which depends on detector collimation was 1 mm for transimission and 2 mm for emission measurements. Instrumental neutron activation analysis was also used to determine the concentration of five elements in the stone, as a whole.  相似文献   

9.
Surfactant-templated mesostructured sol–gel films formed by evaporation induced self assembly (EISA) exhibit highly-ordered hexagonal, lamellar, and cubic structures. The steady-state dip-coating configuration allows both the chemistry and the dynamics of the EISA process to be traced in real time because the steps involved in the formation of the mesostructured material are separated both spatially and temporally in the dip-coating direction. The dynamic processes occurring during film formation can be conveniently monitored by the combination of interferometry and fluorescence spectroscopy of incorporated molecular probes. The selected probes respond to changes in their rotational mobility and the surrounding solvent composition and report these changes through their fluorescence characteristics. By taking in situ fluorescence spectra at various positions within the progressively thinning film, changes in the solvent composition, onset of micelle formation and further organization to the final mesophase structure can be followed. The luminescence of the probe molecule is measured with a spatial resolution of 100 μm. Two categories of surfactant-templated mesostructured sol–gel films were examined. Cetyltrimethylammonium bromide (CTAB) systems assemble into a 2-D hexagonal surfactant/silica mesophase with the surfactant concentration used in this study. CTAB dodecylmethacrylate systems assemble into a lamellar mesophase, which can be further polymerized to form a poly(dodecylmethacrylate)/silica hybrid nanocomposite that mimics nacre. X-ray diffraction patterns, transmission electron microscopy images, and other techniques are used to characterize the final films.  相似文献   

10.
Combinatorial chemistry and high-throughput techniques are an efficient way of exploring optimal values of elemental composition. Optimal composition can result in high performance in a sequence of material synthesis and characterization. Materials combinatorial libraries are typically encountered in the form of a thin film composition gradient which is produced by simultaneous material deposition on a substrate from two or more sources that are spatially separated and chemically different. Fast spatially resolved techniques are needed to characterize structure, composition, and relevant properties of these combinatorial screening samples. In this work, the capability of a glow discharge optical emission spectroscopy (GD-OES) elemental mapping system is extended to nitrogen-based combinatorial libraries with nonconductive components through the use of pulsed radiofrequency power. The effects of operating parameters of the glow discharge and detection system on the achievable spatial resolution were investigated as it is the first time that an rf source is coupled to a setup featuring a push-broom hyperspectral imaging system and a restrictive anode tube GD source. Spatial-resolution optimized conditions were then used to characterize an aluminum nitride/chromium nitride thin-film composition spread. Qualitative elemental maps could be obtained within 16.8 s, orders of magnitude faster than typical techniques. The use of certified reference materials allowed quantitative elemental analysis maps to be extracted from the emission intensity images. Moreover, the quantitative procedure allowed correcting for the inherent emission intensity inhomogeneity in GD-OES. The results are compared to quantitative depth profiles obtained with a commercial GD-OES instrument.  相似文献   

11.
 High resolution, superconducting detectors allow energy dispersive X-ray spectrometry (EDX) with energy resolution and energy threshold far beyond the levels obtained with semiconductor detectors. These cryogenic detectors are run at temperatures of less than 100 mK and combine the excellent energy resolution of wavelength dispersive X-ray spectrometry (WDX) with the fast, energy dispersive analysis of EDX. CSP cryogenic spectrometer’s microcalorimeter type EDX cryodetectors are equipped with a mechanical cooling system that runs vibration free and allows completely automated operations on scanning electron microscopes (SEMs), field emission guns (FEGs) and transmission electron microscopes (TEMs). This detector type offers new opportunities in material analysis, especially when low excitation energies are applied or light elements are to be determined.  相似文献   

12.
Summary.  Superhard nanocomposite coatings of different composition in the quasi-binary system TiN–TiB2 were deposited onto stainless steel sheets by means of unbalanced DC magnetron co-sputtering using segmented TiN/TiB2 targets. The chemistry and microstructure of a TiB0.6N0.7 coating was investigated using X-ray and electron diffraction, photoelectron spectroscopy, energy-filtering transmission electron microscopy, and electron energy-loss spectrometry. High resolution elemental mapping of the elements Ti, B, N, and O with energy-filtering TEM reveals a homogeneous distribution on the nanometer scale. X-Ray and electron diffraction exhibit only TiN crystallites of nanometer size, but no information on the boron-rich phase. The near-edge fine structures of the BK and NK ionization edges in the EELS spectra of the Ti–B–N coatings were used to derive information on the phases by comparing the edges with those of reference compounds. It was found that the TiN nanocrystals occur together with TiO x particles; the grains are embedded in a strongly disordered or quasi-amorphous matrix consisting mainly of TiB2 particles and, near the steel substrate, also boron oxide (B2O3). Received October 4, 2001. Accepted (revised) January 10, 2002  相似文献   

13.
In this study, a prototype WDS-EPMA equipped with a thermal field emitter (TFE) was used. By using X-ray mapping technique with this instrument, we analyzed sub-micron inclusions in highly pure copper compounds used for manufacturing electronic devices. The analytical conditions of the accelerating voltages were 10 keV and 15 keV; the measured elements were Ni and Si. We measured 160000 points (400 × 400 points) within a couple of hours (1.5 hours at 10 keV, 0.5 hour at 15 keV). The analysis of the X-ray mapping data revealed very small inclusions with diameters estimated to be less than 100 nm. The new EPMA could be used for the elemental analysis of various materials including very light elements in a wide area with a spatial resolution of 100 nm.  相似文献   

14.
 A comparison between major and trace element concentrations in garnet performed by electron microprobe (EPMA) technique is reported. Quantitative spot analyses and X-ray maps of major elements (Fe, Mg, Mn, Ca) and the trace element yttrium in garnets from metamorphic rocks are presented. The selected garnet samples come from meta-pelitic and meta-basic specimens belonging to the tectonic unit of the Monte Rosa Nappe (Western Alps). In the metapelites, the quantitative Y distribution maps display a prominent increase at the core, the Y abundance varying by over two orders of magnitude, from about 80 ppm (rim) to over 2100 ppm (core). The Y profiles show well defined patterns with sharp features that do not correlate with major element distributions. A roughly comparable pattern can be supposed only with Mn. The Y distribution suggests that the diffusion of Y through the garnet is very slow compared to the major elements, thus the Y results are suitable for geothermometric estimates. In the metabasites, the Y spatial distribution is characterised by an increasing content from the core to the rim, displaying a zoning pattern opposite to the metapelite garnet. Quantitative EPMA analyses range from 1100 ppm at the rim to values lower than the detection limit at the core. Therefore, the Y content in the garnet can be related to several chemical and physical variables such as the bulk rock composition and the phase assemblage. In particular, in the xenotime-bearing metapelitic system the Y distribution seems to be correlated with metamorphic peak temperature.  相似文献   

15.
 Poly(styrene-co-acrylic acid) (St/AA) copolymer microspheres were prepared by batch emulsifier-free emulsion copolymerization of St with AA. The monomer conversion, the morphology and the composition of the particles along the polymerization process were monitored by a gravimetric method, transmission electron microscopy observation and Fourier transform IR analysis, respectively. A shift of the polymerization locus from inside the particles to “outside” the particles in the postnucleation stage was proposed. The results of the study of the distribution of carboxyl groups by a combination of elemental and X-ray photoelectron spectroscopy analyses implied a core/shell structure for the St/AA copolymer microspheres. By chemical metal deposition, nickel particles were formed and deposited on the surface of St/AA microspheres, forming polymer/metal composite particles. Received: 16 February 2001 Accepted: 8 August 2001  相似文献   

16.
Mass spectrometry (MS) imaging is a versatile method to analyze the spatial distribution of analytes in tissue sections. It provides unique features for the analysis of drug compounds in pharmacokinetic studies such as label-free detection and differentiation of compounds and metabolites. We have recently introduced a MS imaging method that combines high mass resolution and high spatial resolution in a single experiment, hence termed HR2 MS imaging. In the present study, we applied this method to analyze the spatial distribution of the anti-cancer drugs imatinib and ifosfamide in individual mouse organs. The whole kidney of an animal dosed with imatinib was measured at 35 μm spatial resolution. Imatinib showed a well-defined distribution in the outer stripe of the outer medulla. This area was analyzed in more detail at 10 μm step size, which constitutes a tenfold increase in effective spatial resolution compared to previous studies of drug compounds. In parallel, ion images of phospholipids and heme were used to characterize the histological features of the tissue section and showed excellent agreement with histological staining of the kidney after MS imaging. Ifosfamide was analyzed in mouse kidney at 20 μm step size and was found to be accumulated in the inner medulla region. The identity of imatinib and ifosfamide was confirmed by on-tissue MS/MS measurements. All measurements including mass spectra from 10 μm pixels featured accurate mass (≤2 ppm root mean square) and mass resolving power of R = 30,000. Selected ion images were generated with a bin size of ∆m/z = 0.01 ensuring highly specific information. The ability of the method to cover larger areas was demonstrated by imaging a compound in the intestinal tract of a rat whole-body tissue section at 200 μm step size. The described method represents a major improvement in terms of spatial resolution and specificity for the analysis of drug compounds in tissue sections.  相似文献   

17.
With the aim of optimizing the chromatographic process by avoiding any preliminary derivatizing step, we examined the chromatographic behaviour of a selected set of unconjugated bile acids looking at the dominant factors that affect the performances of three different stationary phases: RP-8, RP-18 and RP-18 Base Deactivated (RP-18-BD). Accordingly to its structural peculiarity, the RP-18-BD column combined with a specific mobile phase has proved to be the most suitable one, in enhancing both separation factor α and resolution R S within the selected set of analytes. Pronounced changes in the chromatographic profiles by only slightly changing the mobile phase composition (pH, buffer concentration, percentage and kind of organic modifier) prompted us to achieve satisfactory results in the separation and resolution of the selected set of bile acids.Presented at: CE in the Biotechnology & Pharmaceutical Industries: 7th symposium on the practical applications for the analysis of proteins, nucleotides and small molecules, Montreal, Canada, August 12–16, 2005.An erratum to this article can be found at  相似文献   

18.
LiMnPO4, with a particle size of 50–150 nm, was prepared by oleic acid-assisted solid-state reaction. The materials were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the materials were investigated by galvanostatic cycling. It was found that the introduction of oleic acid in the precursor led to smaller particle size and more homogeneous size distribution in the final products, resulting in improved electrochemical performance. The electrochemical performance of the sample could be further enhanced by Co doping. The mechanism for the improvement of the electrochemical performance was investigated by Li-ion chemical diffusion coefficient ( [(D)\tilde]\textLi ) \left( {{{\tilde{D}}_{\text{Li}}}} \right) and electrochemical impedance spectroscopy measurements. The results revealed that the [(D)\tilde]\textLi {\tilde{D}_{\text{Li}}} values of LiMnPO4 measured by cyclic voltammetry method increase from 9.2 × 10−18 to 3.0 × 10−17 cm2 s−1 after Co doping, while the charge transfer resistance (R ct) can be decreased by Co doping.  相似文献   

19.
A DCM derivative, namely 4-Dicyanomethylene-2-methyl-6-{[4′-(N-hydroxyethyl-N-methyl)amino]styryl}-4H-pyran (DCMH), has been synthesized and covalently incorporated into the inorganic silica network as pendants via a sol–gel process. Molecular structures of the resultants are confirmed by elemental analysis, 1H NMR, DSC, TGA, FTIR and UV–Vis spectroscopy. Photoluminescence (PL) spectra shows that the emission of DCMH peaked at 625 nm is almost completely quenched in DMF solution with a concentration of 1 × 10−4 mol/L, however, in hybrid films, the PL intensity enhances obviously with increasing DCMH concentration even at the high loading content of 40 mol%. All the hybrid films exhibit PL emission around 646–650 nm and the peak position reveal little dependence on the concentration of dye, suggesting they can be used as red emissive materials in light-emitting diodes. The relationship between fluorescence lifetime and dye concentration is also investigated by time-resolved PL measurements.  相似文献   

20.
Human teeth from the Middle Ages have been analysed using a synchrotron microprobe evaluating Mn, Fe, Ba and Pb diffusion from the soil into the tooth structure. It is apparent that post-mortem teeth of ancient populations are influenced by the endogenous environment. The diffusion pattern of some elements can give information both for archaeological purposes and diagenesis processes affecting the apatite ante-mortem elemental content.An X-ray fluorescence set-up with microprobe capabilities, 100 μm of spatial resolution and energy of 18 keV, installed at LURE synchrotron (France) was used. Line scans were performed along the several regions of the teeth, in steps of 100 to 1000 μm. Ba is much enriched in ancient teeth when compared to recent ones, where this element is almost non-existent. Furthermore, the concentration profiles show increased levels of this element close to the external enamel region, reaching values up to 200 μg g 1 decreasing in dentine and achieving a steady level in the inner dentine and root. Pb concentration profiles show strongly increased levels of this element close to the external enamel region (20 μg g 1), decreasing strongly to the inner part of the dentine (0.5 μg g 1) contrarily to the normal situation in modern citizens where the highest concentrations for Pb are in the inner root dentine. This behaviour suggests post-mortem uptake from the soil; the presence of elevated levels of Pb can be explained by the fact that this burial place was a car park for more than 20 years.The distribution of Mn and Fe follow very similar patterns and both are very much enriched especially in the outer surfaces in contact with the soil, showing strong contamination from the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号