首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fracture energy of a polymer depends strongly on the viscoelastic responses of the material, and therefore is a function of temperature and crack velocity. The toughness of a composite is determined by the way in which the reinforcing filler modifies the energy dissipating mechanisms of the polymeric matrix.

The fracture toughness of a variety of polymeric glasses and their composites with glass beads, glass fibers, and rubber particles was measured. The velocity of rapidly moving cracks and the crack propagation rates under controlled loading conditions were also measured.

It was found that the crack propagation velocities in unfilled and glass bead filled materials were controlled by the longitudinal stress waves in the matrix and that the only effects of the glass beads were to blunt the crack tip and limit the viscous deformation. The effect on fracture toughness was relatively small and either positive or negative, depending on which of the above two factors dominated.

The presence of rubber particles as a second phase lowered terminal crack propagation velocities and greatly increased the fracture toughness, indicating a crack retarding effect of the rubber particles. This is related to the induction of crazes in the matrix by the rubber phase.

Glass fibers had a tendency to bridge the tip of a propagating crack, thereby greatly increasing the fracture toughness. In this case the work of fracture comes from a combination of the elastic strain energy stored in the fibers, the energy dissipated in debonding the fibers from the matrix, and the fracture energy of the matrix itself.  相似文献   

2.
《Composite Interfaces》2013,20(2-3):169-191
Natural fiber reinforced renewable resource based laminated composites were prepared from biodegradable poly(lactic acid) (PLA) and untreated or surface-treated pineapple leaf fibers (PALF) by compression molding using the film stacking method. The objective of this study was to determine the effects of surface treatment of PALF on the performance of the fiber-reinforced composites. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to aid in the analysis. The mechanical properties of the PLA laminated composites were improved significantly after chemical treatment. It was found that both silane- and alkali-treated fiber reinforced composites offered superior mechanical properties compared to untreated fiber reinforced composites. The effects of temperature on the viscoelastic properties of composites were studied by dynamic mechanical analysis (DMA). From the DMA results, incorporation of the PALF fibers resulted in a considerable increase of the storage modulus (stiffness) values. The heat defection temperature (HDT) of the PALF fiber reinforced PLA laminated composites was significantly higher than the HDT of the neat PLA resin. The differential scanning calorimeter (DSC) results suggest that surface treatment of PALF affects the crystallization properties of the PLA matrix. Additionally, scanning electron microscopy (SEM) was used to investigate the distribution of PLA within the fiber network. SEM photographs of fiber surface and fracture surfaces of composites clearly indicated the extent of fiber–matrix interface adhesion. It was found that the interfacial properties between the reinforcing PALF fibers and the surrounding matrix of the laminated composite are very important to the performance of the composite materials and PALF fibers are good candidates for the reinforcement fiber of high performance laminated biodegradable biocomposites.  相似文献   

3.
《Composite Interfaces》2013,20(2-3):249-267
The effect of atmospheric-pressure plasma treatment on high strength PAN-based carbon fibers had been studied in terms of fiber surface energetics and mode I and II interlaminar fracture toughness of unidirectional carbon fibers/epoxy matrix composites. The surface characterization of plasma treated carbon fibers was investigated by X-ray photoelectron spectroscopy (XPS) and contact angles. As a result, the plasma treatment changed the surface properties of the carbon fibers, mainly through formation of oxygen functional groups like hydroxyl, carbonyl, and carboxyl groups. According to contact angle measurements, it was observed that plasma treatment led to an increase in surface free energy of the fibers, mainly due to the increase of its specific component. Fracture toughness test results employing double-cantilever beam (DCB) and end notched flexure (ENF) specimens also showed that the increase in specific components or hydrogen bonding between the –OH groups on carbon fibers and the =O ring in epoxy matrix resins played an important role in improving the degree of adhesion at interfaces, resulting in an increase in the interfacial fracture toughness of the composites studied.  相似文献   

4.
《Composite Interfaces》2013,20(2-3):119-138
Boron nitride (BN)-coated aluminoborosilicate (Nextel? 312) fibers, produced via ammonia nitridation, along with 'as-received' and 'desized' fibers, were composited in a silicon oxycarbide (Blackglas?) matrix. The mechanical properties, failure properties, and fiber–matrix interfacial chemistry of the composite were investigated. BN treated fiber composites show a 90% improvement in flexural strength and substantial increases in shear strength (short beam shear and Iosipescu) over the 'as-received' fiber composite. The composite fabricated with 'desized' fibers underwent spontaneous delamination during pyrolization, precluding mechanical testing. X-ray photoelectron spectroscopy of the starting materials and of composite fracture surfaces combined with scanning electron microscopy and energy dispersive X-ray spectroscopy indicate that the locus of failure of the BN-coated fiber composite occurs at the matrix/BN coating interface.  相似文献   

5.
Abstract

The polyoxymethylene (POM)/basalt fiber composites were prepared by use of long fiber-reinforced thermoplastic technology through melt pultrusion. The mechanical and tribological properties, morphology, and thermal stability of the resulting composites were investigated. The composites exhibit significant improvements in tensile, flexural, and notched impact strength. These mechanical strength and toughness are dependent on the fiber content over the full range of the study. The residual fiber length and distribution in the injection-molded specimens were characterized. The prominent reinforcement effect of basalt fiber on POM is derived from the supercritical fiber length, which is much longer than that of the short fiber-reinforced ones and thus makes the composites take full advantage of the strength of the reinforcing fibers. The Kelly–Tyson model was used to predict the ultimate tensile strength of POM composites using the measured values of residual fiber length in the matrix, but the deviations were observed at the high contents of basalt fiber. The morphologic investigation indicates that the fiber pullout and fiber breakage both contribute energy dissipation to the tensile fracture of the composites. The tribological characterization indicates that the friction coefficients and specific wear rates of POM composites also decrease remarkably. Such an improvement of tribological performance is due to the presence of the high wear-resistant basalt fibers on the top of the worn surface bearing the dynamic loadings under sliding. Moreover, the dynamic mechanical analysis reveals that the storage moduli of the composites increase with increasing the fiber content, whereas the loss factors present an opposite trend.  相似文献   

6.
《Composite Interfaces》2013,20(4):347-355
The fracture properties of particulate-reinforced metal matrix composites (MMCs) are influenced by several factors, such as particle size, inter-particle spacing and volume fraction of the reinforcement. In addition, complex microstructural mechanisms, such as precipitation hardening induced by heat treatment processing, affect the fracture toughness of MMCs. Precipitates that are formed at the particle/matrix interface region, lead to improvement of the interfacial strength, and hence enhancement of the macroscopic strength properties of the composite material. In this paper, a micro-mechanics model, based on thermodynamics principles, is proposed to determine the fracture strength of the interface at a segregated state in MMCs. This model uses energy considerations to express the fracture toughness of the interface in terms of interfacial critical strain energy release rate and elastic modulus. The interfacial fracture toughness is further expressed as a function of the macroscopic fracture toughness and mechanical properties of the composite, using a toughening mechanism model based on crack deflection and interface cracking. Mechanical testing is also performed to obtain macroscopic data, such as the fracture strength, elastic modulus and fracture toughness of the composite, which are used as input to the model. Based on the experimental data and the analysis, the interfacial strength is determined for SiC particle-reinforced aluminium matrix composites subjected to different heat treatment processing conditions.  相似文献   

7.
Nearly all electronic equipment is susceptible to malfunction as a result of electromagnetic interference. In this study, glass fiber, and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave.  相似文献   

8.
《Composite Interfaces》2013,20(4):335-353
Cellulosic fibers have been used as cost-cutting fillers in plastic industry. Among the various factors, the final performance of the composite materials depends to a large extent on the adhesion between the polymer matrix and the reinforcement and therefore on the quality of the interface. To achieve optimum performance of the end product, sufficient interaction between the matrix resin and the cellulosic material is desired. This is often achieved by surface modification of the resin or the filler. Banana fiber, the cellulosic fibers obtained from the pseudo-stem of banana plant (Musa sepientum) is a bast fiber with relatively good mechanical properties. The fiber surface was modified chemically to bring about improved interfacial interaction between the fiber and the polyester matrix. Various silanes and alkali were used to modify the fiber surface. Modified surfaces were characterized by SEM and FTIR. The polarity parameters of the chemically modified fibers were investigated using the solvatochromic technique. The results were further confirmed by electrokinetic measurements. Chemical modification was found to have a profound effect on the fiber–matrix interactions. The improved fiber–matrix interaction is evident from the enhanced tensile and flexural properties. The lower impact properties of the treated composites compared to the untreated composites further point to the improved fiber–matrix adhesion. In order to know more about the fiber–matrix adhesion, fractured surfaces of the failed composites where further investigated by SEM. Of the various chemical treatments, simple alkali treatment with NaOH of 1% concentration was found to be the most effective. The fiber–matrix interactions were found to be dependent on the polarity of the modified fiber surface.  相似文献   

9.
《Composite Interfaces》2013,20(7-9):829-839
Composites were fabricated with alkali (10%, 15% and 20%) treated bamboo fibers incorporated to the extent of 50% (by volume) and polyester resin. Impact test was made on bamboo strips and composites samples. It was observed that the fracture energy undergoes an increase from untreated to alkali treated bamboo strips. Alkali treated bamboo fiber composites show higher fracture energy value than the untreated bamboo fiber composites. The phenomenal change was quite evident from scanning electron micrographs of the fractured surface. Considering the effects of all factors, the work of fracture shows maximum value in the case of 20% alkali treated bamboo strip composites. It was also observed that the rate of increase of work of fracture value is much higher in the case of composite samples than the bamboo sample. It was explained on the basis of synergism obtained by improved interfacial adhesion between fiber and matrix, and removal of hemicellulose from the bamboo itself, which was evident from the intermolecular H-bonding formation studied by FT-IR.  相似文献   

10.
《Composite Interfaces》2013,20(2):171-205
Sisal fibers have been used for the reinforcement of polypropylene matrix. The compatibilization between the hydrophilic cellulose fiber and hydrophobic PP has been achieved through treatment of cellulose fibers with sodium hydroxide, isocyanates, maleic anhydride modified polypropylene (MAPP), benzyl chloride and by using permanganate. Various fiber treatments enhanced the tensile properties of the composites considerably, but to varying degrees. The SEM photomicrographs of fracture surfaces of the treated composites clearly indicated the extent of fiber–matrix interface adhesion, fiber pullout and fiber surface topography. Surface fibrillation is found to occur during alkali treatment which improves interfacial adhesion between the fiber and PP matrix. The grafting of the fibers by MAPP enhances the tensile strength of the resulting composite. It has been found that the urethane derivative of polypropylene glycol and cardanol treatments reduced the hydrophilic nature of sisal fiber and thereby enhanced the tensile properties of the sisal–PP composites, as evident from the SEM photomicrographs of the fracture surface. The IR spectrum of the urethane derivative of polypropylene glycol gave evidence for the existence of a urethane linkage. Benzoylation of the fiber improves the adhesion of the fiber to the PP matrix. The benzoylated fiber was analyzed by IR spectroscopy. Experimental results indicated a better compatibility between benzoylated fiber and PP. The observed enhancement in tensile properties of permanganate-treated composites at a low concentration is due to the permanganate-induced grafting of PP on to sisal fibers. Among the various treatments, MAPP treatment gave superior mechanical properties. Finally, experimental results of the mechanical properties of the composite have been compared with theoretical predictions.  相似文献   

11.
《Composite Interfaces》2013,20(4):321-334
The plasma polymerization technique was used to surface modify glass fibers in order to form a strong but tough link between the glass fiber and the polyester matrix, and enable an efficient stress transfer from the polymer matrix to the fiber. Plasma polymer films of hexamethyldisiloxane, vinyltriethoxysilane, and tetravinylsilane in a mixture with oxygen gas were engineered as compatible interlayers for the glass fiber/polyester composite. The interlayers of controlled physico-chemical properties were tailored using the deposition conditions with regard to the elemental composition, chemical structure, and Young's modulus in order to improve adhesion bonding at the interlayer/glass and polyester/interlayer interfaces and tune the cross-linking of the plasma polymer. The optimized interlayer enabled a 6.5-fold increase of the short-beam strength compared to the untreated fibers. The short-beam strength of GF/polyester composite with the pp-TVS/O2 interlayer was 32% higher than that with industrial sizing developed for fiber-reinforced composites with a polyester matrix.  相似文献   

12.
Y. M. Zhang  W. G. Zhang  M. Fan 《哲学杂志》2018,98(15):1376-1396
In polymeric composites, well-defined inclusions are incorporated into the polymer matrix to alleviate the brittleness of polymers. When a craze is initiated in such a composite, the interaction between the craze and the surrounding inclusions will greatly affect the composite’s mechanical behaviours and toughness. To the best knowledge of the authors, only little research work has been found so far on the interaction between a craze and the near-by inclusions in particulate–polymer composites. In the current study, the first time, the influences of the surrounding inclusions on the craze are investigated in particulate–polymer composites. The three-phase model is adopted to study the fracture behaviours of the craze affected by multiple inclusions. An iterative procedure is proposed to solve the stress intensity factors. Parametric studies are performed to investigate the influences of the reinforcing particle volume fraction and the shear modulus ratio on fracture behaviours of particulate–polymer composites.  相似文献   

13.
《Composite Interfaces》2013,20(1):75-94
Interfacial debonding behavior is studied for unidirectional fiber reinforced composites from both experimental and analytical viewpoints. A new type of two-dimensional unidirectional model composite is prepared using 10 boron fibers and transparent epoxy resin with two levels of interfacial strength. In situ observation of the internal mesoscopic fracture process is carried out using the single edge notched specimen under static loading. The matrix crack propagation, the interfacial debonding growth and the interaction between them are directly observed in detail. As a result, the interfacial debonding is clearly accelerated in specimens with weakly bonded fibers in comparison with those with strongly bonded fibers. Secondary, three-dimensional finite element analysis is carried out in order to reproduce the interfacial debonding behavior. The experimentally observed relation between the mesoscopic fracture process and the applied load is given as the boundary condition. We successfully evaluate the mode II interfacial debonding toughness and the effect of interfacial frictional shear stress on the apparent mode II energy release rate separately by employing the present model composite in combination with the finite element analysis. The true mode II interfacial debonding toughness for weaker interface is about 0.4 times as high as that for a stronger interface. The effect of the interfacial frictional shear stress on the apparent mode II energy release rate for the weak interface is about 0.07 times as high as that for the strong interface. The interfacial frictional shear stress and the coefficient of friction for weak interface are calculated as 0.25 and 0.4 times as high as those for strong interface, respectively.  相似文献   

14.
15.
The composites based on low-density polyethylene with elastomer filling particles are studied. A fracture mechanism induced by the fracture of filler particles or their separation from the matrix polymer is revealed. The fracture of the composites is caused by the growth of formed rhombic pores. The natural relative elongation in a neck is shown to be an important characteristic of a polymer. If the relative elongation in a neck is lower than the strain of appearance of rhombic pores, they form at the stage of uniform tension after necking, and the composite remains plastic. If the relative elongation in a neck is higher than the strain of formation of rhombic pores, they nucleate during necking, and the material undergoes quasi-brittle fracture. Good adhesion between the matrix polymer and elastic particles hinders the appearance of rhombic pores in a neck and, thus, retains high deformation properties of the composites.  相似文献   

16.
《Composite Interfaces》2013,20(4):319-336
Not all steel fiber reinforced concrete composites are equally effective in enhancing structural performance. Their mechanical behaviour strongly depends upon the reinforcement morphology as well as the properties of the interface lying between steel reinforcement and concrete matrix. Using bone-shaped short (BSS) steel fibers, instead of conventional straight short (CSS) steel fibers, to reinforce concrete has demonstrated their potential in improving toughness, ductility and energy absorbing capacity under impact significantly and simultaneously. Accomplishing a strong steel–concrete interface leads to a slight increase in composite strength but simultaneously to a significant decrease in its toughness. Due to the sensitivity of steel reinforced concrete performance on these complex geometric and material parameters, the development of a numerical tool capable of simulating accurately the composite mechanical behaviour and thus leading to optimized design solutions is desirable. The physical problem of the present work involves a typical concrete composite uniformly reinforced with steel fibers subjected to tensional loading. A micromechanical non-linear finite element formulation is utilized in order to predict the load transfer characteristics and the failure process. A linear material behaviour is assumed for the steel component; a non-linear multi-crack material response is used to describe concrete while a mix-mode bilinear behaviour is utilized for the interface providing separation of primary material phases. Numerical results are presented in terms of the global design parameters. The influence of the fiber end shape, the interface strength and the fiber volume fraction on the composite strength and toughness is addressed and consequently optimized design preferences arise.  相似文献   

17.
《Composite Interfaces》2013,20(5):451-466
Sheath-core type bicomponent fibers of polypropylene (PP) as a sheath component and thermotropic liquid crystalline polymer (TLCP) as a core component were prepared by the highspeed melt spinning process. Continuous fiber reinforced thermoplastic composites, in which TLCP acts as a reinforcing fiber and PP as a matrix polymer, were fabricated by the compression molding of these fibers. In the melt spinning, the attainable highest take-up velocity of TLCP was improved by co-processing with PP. Tensile modulus and strength of the TLCP component in the PP/TLCP bicomponent fibers increased with an increase in the take-up velocity. Comparison of wide-angle X-ray diffraction patterns of starting bicomponent fibers and fabricated composites indicated that the orientation relaxation of TLCP did not occur in the compression molding process. Accordingly, the tensile modulus and strength of the PP/TLCP composites were similar to those of the bicomponent fibers. Continuous fiber reinforced thermoplastic composites with various types of fiber content distributions were fabricated from the bicomponent fibers in which sheath-core composition was changed gradually in the spinning process. In the three-point bending test, the composites with two different types of symmetric structural gradients, one with higher TLCP fiber content near the surfaces than in the center and the other with higher TLCP content in the center than near the surfaces, exhibited different flexural moduli even though the overall TLCP contents were comparable. In the three-point bending test of a composite with asymmetric structural gradient, the yielding behavior and maximum flexural load varied depending on the direction of load application although the initial flexural moduli were similar.  相似文献   

18.
《Composite Interfaces》2013,20(7-9):867-879
The carpet waste fibers and waste glass that create a serious environmental problem can be converted into useful products. The use of these waste materials in a cement-based composite can be a promising direction for waste reduction and resources conservation. In this study, several tests have been carried out to investigate the performance of control mortar using recycled glass and fibers as a fraction of aggregates in a cement-based composite. These tests included compressive strength, flexural strength, flexural toughness and water absorption. The results revealed that carpet waste fiber and waste glass could be reused as substitutes for conventional materials in cement-based composites.  相似文献   

19.
高浓度纤维增强材料介电特性计算方法   总被引:2,自引:0,他引:2       下载免费PDF全文
廖意  蔡昆  张元  王晓冰 《物理学报》2016,65(2):24102-024102
针对复合材料的微观结构非均匀和各向异性特点带来的数值方法计算慢、内存消耗大的问题,利用均匀化方法计算纤维增强复合材料的等效电磁参数.采用了纤维低体积添加比至高体积添加比的迭代方法,同时提出了一个描述材料微观结构的修正的特征长度,将现有的均匀化方法推广至非准静态(微波频段)条件下高纤维浓度情况.提出的修正的均匀化模型可直接用于反射系数、屏蔽效能等计算,其屏蔽效能与实际微观结构复合材料的数值仿真结果进行了对比,验证了提出的等效电磁参数计算公式的有效性和频率适用范围.  相似文献   

20.
Polymers reinforced with natural fibers are beneficial to prepare biodegradable composite materials. A new expression for the Young's modulus of short, natural fiber (SNF) reinforced polymer composites was derived based on a micro-mechanical model. The Young's moduli of poly(lactic acid) reinforced with reed fibers and low-density polyethylene (LDPE) reinforced with sisal fibers, from literature data, were estimated in the fiber weight fraction range from 0 to 50% using the equation and both the compounding rule and the Halpin–Tsai equation, and the estimations were compared with the reported measured data. The results showed that the predictions of the Young's moduli by means of the new Young's modulus equation were close to the measured data from the low density polyethylene/sisal fiber composites, as well as the poly(lactic acid)/reed composites at high fiber concentration. Comparing with other Young's modulus equations, the new Young's modulus equation would be more convenient to use owing to the parameters in the equation being easily determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号