首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper proposes a reduction technique for the generalized Riccati difference equation arising in optimal control and optimal filtering. This technique relies on a study on the generalized discrete algebraic Riccati equation. In particular, an analysis on the eigenstructure of the corresponding extended symplectic pencil enables to identify a subspace in which all the solutions of the generalized discrete algebraic Riccati equation are coincident. This subspace is the key to derive a decomposition technique for the generalized Riccati difference equation. This decomposition isolates a “nilpotent” part, which converges to a steady-state solution in a finite number of steps, from another part that can be computed by iterating a reduced-order generalized Riccati difference equation.  相似文献   

2.
For a discrete-time infinite-horizon linear-quadratic optimal control problem, under the assumption of the nonemptyness of the set of the admissible processes, we prove the existence and the uniqueness of an optimal process, we prove that the value-function is a quadratic function of the initial state, and we characterize the matrix of this quadratic value-function among the solutions of an algebraic Riccati equation by using a fixed-point theorem.  相似文献   

3.
We consider the infinite horizon quadratic cost minimization problem for a stable time-invariant well-posed linear system in the sense of Salamon and Weiss, and show that it can be reduced to a spectral factorization problem in the control space. More precisely, we show that the optimal solution of the quadratic cost minimization problem is of static state feedback type if and only if a certain spectral factorization problem has a solution. If both the system and the spectral factor are regular, then the feedback operator can be expressed in terms of the Riccati operator, and the Riccati operator is a positive self-adjoint solution of an algebraic Riccati equation. This Riccati equation is similar to the usual algebraic Riccati equation, but one of its coefficients varies depending on the subspace in which the equation is posed. Similar results are true for unstable systems, as we have proved elsewhere.

  相似文献   


4.
An adaptive control problem for some linear stochastic evolution systems in Hilbert spaces is formulated and solved in this paper. The solution includes showing the strong consistency of a family of least squares estimates of the unknown parameters and the convergence of the average quadratic costs with a control based on these estimates to the optimal average cost. The unknown parameters in the model appear affinely in the infinitesimal generator of the C 0 semigroup that defines the evolution system. A recursive equation is given for a family of least squares estimates and the bounded linear operator solution of the stationary Riccati equation is shown to be a continuous function of the unknown parameters in the uniform operator topology  相似文献   

5.
This note is concerned with the regularity of solutions of algebraic Riccati equations arising from infinite dimensional LQR control problems. We show that distributed parameter systems described by certain parabolic partial differential equations often have a special structure that smooths solutions of the corresponding Riccati equation. This analysis is motivated by the need to find specific representations for Riccati operators that can be used in the development of computational schemes for problems where the input and output operators are not Hilbert-Schmidt. This situation occurs in many boundary control problems and in certain distributed control problems associated with optimal sensor/actuator placement.  相似文献   

6.
We start with a discussion of coupled algebraic Riccati equations arising in the study of linear-quadratic optimal control problems for Markov jump linear systems. Under suitable assumptions, this system of equations has a unique positive semidefinite solution, which is the solution of practical interest. The coupled equations can be rewritten as a single linearly perturbed matrix Riccati equation with special structures. We study the linearly perturbed Riccati equation in a more general setting and obtain a class of iterative methods from different splittings of a positive operator involved in the Riccati equation. We prove some special properties of the sequences generated by these methods and determine and compare the convergence rates of these methods. Our results are then applied to the coupled Riccati equations of jump linear systems. We obtain linear convergence of the Lyapunov iteration and the modified Lyapunov iteration, and confirm that the modified Lyapunov iteration indeed has faster convergence than the original Lyapunov iteration.  相似文献   

7.
Solutions of the algebraic matrix Riccati equation are studied for normal forms of linear Hamiltonian systems. A necessary and sufficient condition is proved for existence of solutions.  相似文献   

8.
We consider different iterative methods for computing Hermitian solutions of the coupled Riccati equations of the optimal control problem for jump linear systems. We have constructed a sequence of perturbed Lyapunov algebraic equations whose solutions define matrix sequences with special properties proved under proper initial conditions. Several numerical examples are included to illustrate the effectiveness of the considered iterations.  相似文献   

9.
In this paper, we present a convergence analysis of the inexact Newton method for solving Discrete-time algebraic Riccati equations (DAREs) for large and sparse systems. The inexact Newton method requires, at each iteration, the solution of a symmetric Stein matrix equation. These linear matrix equations are solved approximatively by the alternating directions implicit (ADI) or Smith?s methods. We give some new matrix identities that will allow us to derive new theoretical convergence results for the obtained inexact Newton sequences. We show that under some necessary conditions the approximate solutions satisfy some desired properties such as the d-stability. The theoretical results developed in this paper are an extension to the discrete case of the analysis performed by Feitzinger et al. (2009) [8] for the continuous-time algebraic Riccati equations. In the last section, we give some numerical experiments.  相似文献   

10.
This paper analyses the properties of the solutions of the generalized continuous algebraic Riccati equation from a geometric perspective. This analysis reveals the presence of a subspace that may provide an appropriate degree of freedom to stabilize the system in the related optimal control problem even in cases where the Riccati equation does not admit a stabilizing solution.  相似文献   

11.
An approach to minimize the control costs and ensuring a stable deviation control is the Riccati controller and we want to use it to control constrained dynamical systems (differential algebraic equations of Index 3). To describe their discrete dynamics, a constrained variational integrators [1] is used. Using a discrete version of the Lagrange-d’Alembert principle yields a forced constrained discrete Euler-Lagrange equation in a position-momentum form that depends on the current and future time steps [2]. The desired optimal trajectory (qopt, popt) and according control input uopt is determined solving the discrete mechanics and optimal control (DMOC) algorithm [3] based on the variational integrator. Then, during time stepping of the perturbed system, the discrete Riccati equation yields the optimal deviation control input uR. Adding uopt and uR to the discrete Euler-Lagrange equation causes a structure preserving trajectory as both DMOC and Riccati equations are based on the same variational integrator. Furthermore, coordinate transformations are implemented (minimal, redundant and nullspace) enabling the choice of different coordinates in the feedback loop and in the optimal control problem. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Matrix Riccati equations appear in numerous applications, especially in control engineering. In this paper we derive analytical formulas for exact solutions of algebraic and differential matrix Riccati equations. These solutions are expressed in terms of matrix transfer functions of appropriate linear dynamical systems.  相似文献   

13.
The optimal control of a class of stochastic parabolic systems is studied. This class includes systems with noise depending on spatial derivatives of the state, Neumann boundary control, and Dirichlet boundary observation, and extends a class of stochastic systems with distributed control studied by Da Prato [3] and Da Prato and Ichikawa [4]. The work is based on the direct study of the Riccati equation arising in the optimal control problem over finite time horizon. The problem over infinite time horizon and the corresponding algebraic Riccati equation are also considered.  相似文献   

14.
讨论线性二次最优控制问题, 其随机系统是由 L\'{e}vy 过程驱动的具有随机系数而且还具有仿射项的线性随机微分方程. 伴随方程具有无界系数, 其可解性不是显然的. 利用 $\mathscr{B}\mathscr{M}\mathscr{O}$ 鞅理论, 证明伴随方程在有限 时区解的存在唯一性. 在稳定性条件下, 无限时区的倒向随机 Riccati 微分方程和伴随倒向随机方程的解的存在性是通过对应有限 时区的方程的解来逼近的. 利用这些解能够合成最优控制.  相似文献   

15.
In this paper, the problem of the numerical computation of the stabilizing solution of the game theoretic algebraic Riccati equation is investigated. The Riccati equation under consideration occurs in connection with the solution of the H  ∞  control problem for a class of stochastic systems affected by state dependent and control dependent white noise. The stabilizing solution of the considered game theoretic Riccati equation is obtained as a limit of a sequence of approximations constructed based on stabilizing solutions of a sequence of algebraic Riccati equations of stochastic control with definite sign of the quadratic part. The efficiency of the proposed algorithm is demonstrated by several numerical experiments.  相似文献   

16.
We study the optimal input-output stabilization of discrete time-invariant linear systems in Hilbert spaces by state feedback. We show that a necessary and sufficient condition for this problem to be solvable is that the transfer function has a right factorization over H-infinity. A necessary and sufficient condition in terms of an (arbitrary) realization is that each state which can be reached in a finite time from the zero initial state has a finite cost. Another equivalent condition is that the control Riccati equation has a solution (in general unbounded and even non densely defined). The optimal state feedback input-output stabilization problem can then be solved explicitly in terms of the smallest solution of this control Riccati equation. We further show that after renorming the state space in terms of the solution of the control Riccati equation, the closed-loop system is not only input-output stable, but also strongly internally stable. Received: July 4, 2007. Revised: October 17, 2007.  相似文献   

17.
We consider a set of discrete-time coupled algebraic Riccati equations that arise in quadratic optimal control of Markovian jump linear systems. Two iterations for computing a symmetric (maximal) solution of this system are investigated. We construct sequences of the solutions of the decoupled Stein equations and show that these sequences converge to a solution of the considered system. Numerical experiments are given.  相似文献   

18.
We consider an optimal control problem with indefinite cost for an abstract model, which covers, in particular, parabolic systems in a general bounded domain. Necessary and sufficient conditions are given for the synthesis of the optimal control, which is given in terms of the Riccati operator arising from a nonstandard Riccati equation. The theory extends also a finite-dimensional frequency theorem to the infinite-dimensional setting. Applications include the heat equation with Dirichlet and Neumann controls, as well as the strongly damped Euler–Bernoulli and Kirchhoff equations with the control in various boundary conditions.  相似文献   

19.
We prove a comparison theorem for the solutions of Riccati matrix equations in which the diagonal entries of the matrix multiplying the linear term are perturbed by a bounded function. This theorem is used to study optimal trajectories in a pollution control problem stated in the form of a linear regulator over an infinite time horizon with a discount function of the general form.  相似文献   

20.
We study the linear quadratic optimal stochastic control problem which is jointly driven by Brownian motion and L\'{e}vy processes. We prove that the new affine stochastic differential adjoint equation exists an inverse process by applying the profound section theorem. Applying for the Bellman's principle of quasilinearization and a monotone iterative convergence method, we prove the existence and uniqueness of the solution of the backward Riccati differential equation. Finally, we prove that the optimal feedback control exists, and the value function is composed of the initial value of the solution of the related backward Riccati differential equation and the related adjoint equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号