首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formylation of 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine 1a using Vilsmeier–Haack conditions yields 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidin‐6‐ylcarbaldehyde 3a . 5,7‐Diaryl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidines 1b , 1c in this reaction apart from formylation undergo recyclization into 5‐aryl‐1,2,4‐triazolo[1,5‐a]pyrimidin‐6‐ylmethane derivatives 4b , 4c , 5b , 5c , and 6 . The structure of the synthesized compounds was determined on the basis of NMR, IR, and MS spectroscopic data and confirmed by the X‐ray analysis of the 6‐(ethoxy‐phenyl‐methyl)‐5‐phenyl‐[1,2,4]triazolo[1,5‐a]pyrimidine 6 , 5‐phenyl‐6‐(1‐phenyl‐vinyl)‐[1,2,4]triazolo[1,5‐a]pyrimidine 11 , and 7‐phenyl‐6‐(1‐phenyl‐vinyl)‐[1,2,4]triazolo[4,3‐a]pyrimidine 12 .  相似文献   

2.
Naphtho[2,1‐b]furan‐2‐yl)(8‐phenylpyrazolo[5,1‐c][1,2,4]triazin‐3‐yl)methanone, ([1,2,4]triazolo[3,4‐c][1,2,4]triazin‐6‐yl)(naphtho[2,1‐b]furan‐2‐yl)methanone, benzo[4,5]imidazo[2,1‐c][1,2,4]triazin‐3‐yl‐naphtho[2,1‐b]furan‐2‐yl‐methanone, 5‐(naphtho[2,1‐b]furan‐2‐yl)pyrazolo[1,5‐a]pyrimidine, 7‐(naphtho[2,1‐b]furan‐2‐yl)‐[1,2,4]triazolo[4,3‐a]pyrimidine, 2‐naphtho[2,1‐b]furan‐2‐yl‐benzo[4,5]imidazo[1,2‐a]pyrimidine, pyridine, and pyrazole derivatives are synthesized from sodium salt of 5‐hydroxy‐1‐naphtho[2,1‐b]furan‐2‐ylpropenone and various reagents. The newly synthesized compounds were elucidated by elemental analysis, spectral data, chemical transformation, and alternative synthetic route whenever possible. J. Heterocyclic Chem., (2012).  相似文献   

3.
A diversity of new 7 ‐substituted[1,2,4]triazolo[1,5‐a]pyrimidine and 6‐substituted[1,2,4]triazolo[1,5‐a]pyrimidine‐7‐amine derivatives has been synthesized via reaction of 3‐amino‐[1,2,4]triazole with enaminonitriles and enaminones. The regio orientation and the structure of the products were confirmed by spectral and analytical data and synthesis via an alternative route. The procedure proved to be simple, efficient, and high yielding, and diversities of [1,2,4]triazolo[1,5‐a]pyrimidines were obtained.  相似文献   

4.
Dedicated to Dr. János Császár on the occasion of his 70th birthday Ring transformation of 2‐cyanoimido‐3‐methyl‐1,3‐oxazolidine ( 10 ) yielded 5‐amino‐3‐[N‐(2‐hydrox‐yethyl)‐N‐methyl]amino‐1H‐1,2,4‐triazole ( 6 ) that was ring closed with different β‐keto esters to 2‐[N‐(2‐hydroxyethyl)‐N‐methyl]amino‐1,2,4‐triazolo[1,5‐a]pyrimidinones ( 4 ). Cyclisation of derivatives 4 led to imidazo[2′,1′:3,4][1,2,4]triazolo[1,5‐a]pyrimidines ( 2 ) and imidazo[1′,2′:2,3][1,2,4]triazolo[1,5‐a]pyrim‐idines ( 3 ) representing 10 novel ring systems. Besides spectroscopical evidence of structure of derivatives 2 and 3 X‐ray diffraction analysis of derivative 2b was also performed.  相似文献   

5.
E‐3‐(N,N‐Dimethylamino)‐1‐(3‐methylthiazolo[3,2‐a]benzimidazol‐2‐yl)prop‐2‐en‐1‐one ( 2 ) was synthesized by the reaction of 1‐(3‐methylthiazolo[3,2‐a]benzimidazol‐2‐yl)ethanone ( 1 ) with dimethylformamide‐dimethylacetal. The reaction of 2 with 5‐amino‐3‐phenyl‐1H‐pyrazole ( 4a ) or 3‐amino‐1,2,4‐(1H)‐triazole ( 4b ) furnished pyrazolo[1,5‐a]pyrimidine and 1,2,4‐triazolo[1,5‐a]pyrimidine derivatives 6a and 6b , while the reaction of enaminone 2 with 6‐aminopyrimidine derivatives 7a,b afforded pyrido[2,3‐d]pyrimidine derivatives 9a,b , respectively. The diazonium salts 11a or 11b coupled with compound 2 to yield the pyrazolo[5,1‐c]‐1,2,4‐triazine and 1,2,4‐triazolo[5,1‐c]‐1,2,4‐triazine derivatives 13a and 13b . Some of the newly synthesized compounds exhibited a moderate effect against some bacterial and fungal species.  相似文献   

6.
Novel [1,2,4]triazole derivatives were synthesized via various synthetic pathways. Among which were different substituted [1,2,4]triazole analogues that were synthesized, in addition to various fused [1,2,4]triazolo[1,5‐a]pyrimidine derivatives, [1,2,4]triazolo[1,5‐a][1,3,5]triazines, and [1,2,4]triazolo[5,1‐c][1,2,4]triazines. Besides, benzo[h][1,2,4]triazolo[5,1‐b]quinazolines, [1,2,4]triazolo‐[5,1‐b]quinazoline, [1,2,4]triazolo[1,5‐a]quinazoline and [1,2,4]triazolo[5,1‐d][1,2,3,5]tetrazine derivatives were also synthesized. The newly synthesized compounds were evaluated for their in vitro anticancer activity against liver cancer HepG2 and breast cancer MCF7 cell lines compared with the reference drug doxorubicin. Compounds 4 , 7 , 15 , 17 , 28 , 34 , and 47 were found to exert promising anticancer activity against HepG2 cell line showing IC50 values ranging from 17.69 to 25.4 μM/L, while compounds 7 , 14a , 17 , 28 , and 34 showed significant activity against MCF7 cell line with IC50 values ranging from 17.69 to 27.09 μM/L.  相似文献   

7.
A novel series of 2,4‐disubstituted‐1,2,4‐triazolo[1,5‐a]quinazolin‐5(4H)‐ones were prepared by Dimroth rearrangement of their respective isomers namely 1,4‐disubstituted‐[1,2,4]triazolo[4,3‐a]‐quinazolin‐5(4H)‐ones. The latter were prepared via new synthetic strategy based on 1,5‐elecrocyclization of the respective N‐(4‐oxo‐3‐phenylquinazolin‐2‐yl)nitrilimines.  相似文献   

8.
The reaction of 5,7‐diphenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 1 ) with α,β‐unsaturated carbonyl compounds 2a‐f led to the formation of the alkylated heterocycles 3a‐f (Figure 1). However, the reaction of 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 5 ) with 2a‐c yielded under the same conditions the triazolo[5,1‐b]quinazolines 6a‐c (Figure 3). In this case, the alkylation is followed by a cyclocondensation. The structure elucidation of the products is based on ir, ms, 1H and 13C nmr measurements and on an X‐ray diffraction study.  相似文献   

9.
The aza‐Wittig reactions of benzaldehyde‐, acetophenone‐ and benzophenone 1‐[(triphenylphosphor‐anylidene)amino]ethylidenehydrazones ( 1 ) with 2,3‐furandiones 6 provide a new route to 4H,8H‐1,2,4‐triazolo[1,5‐c][1,3]oxazepin‐4‐ones 14 or 5,6‐dihydro‐7H,12H‐naphtho[2,1‐f|[1,2,4]triazolo[1,5‐c]‐[1,3]oxazepin‐7‐ones 17 via the thermal reaction of the expected azinoimine vinylogous lactones.  相似文献   

10.
This paper describes the preparation of some pyrazolo[1,5‐a]‐, 1,2,4‐triazolo[1,5‐a]‐ and imidazo[1,2‐a]‐pyrimidines substituted on the pyrimidine moiety by a 4‐[(N‐acetyl‐N‐ethyl)amino]phenyl group. A new synthesis of related benzo[h]pyrazolo[1,5‐a]‐, benzo[h]pyrazolo[5,1‐b]‐ and benzo[h]1,2,4‐triazolo[1,5‐a]‐quinazolines is also reported.  相似文献   

11.
Derivatives of the new ring system pyrrolo[3,4‐e][1,2,3] triazolo[1,5‐a]pyrimidine 6 were prepared in high yields in one step by reaction of 3‐azidopyrrole 3 and substituted acetonitriles. Compound 6b rearranged, upon heating in dimethyl sulfoxide in the presence of water, to pyrrolo[3,4‐d][1,2,3]triazolo‐[1,5‐a]pyrimidine 7.  相似文献   

12.
The cyclization mechanism for the title compound ( 2 ) reacting with one‐carbon fragment reagents or nitrous acid to afford heterobicyclic compounds 6‐amino‐3‐substituted‐1,2,4‐triazolo[3,4‐f][1,2,4]triazin‐8(7H)‐ones ( 3a~d ) or 6‐amino‐1,2,3,4‐tetrazolo[5,1‐f][1,2,4]triazin‐8(7H)‐one ( 4 ), respectively, is explored in this paper. When 3‐amino‐2‐benzyl‐6‐hydrazino‐1,2,4‐triazin‐5(2H)‐one ( 10 ), the N‐2 benzylated derivative of 2 , is treated under the same conditions, ring cyclization does not occur; instead, 3‐amino‐2‐benzyl‐6‐substituted‐1,2,4‐triazin‐5(2H)‐ones ( 11,12,14 ) and 2‐N‐(2‐amino‐1‐benzyl‐4‐oxo‐1,2,4‐triazin‐5‐yl)semicarbazide ( 13 ) are formed. Alternatively, when 3‐amino‐6‐hydrazino‐2‐[(2‐hydroxyethoxy)methyl]‐1,2,4‐triazin‐5(2H)‐one ( 16 ), a compound bearing the 2‐[(2‐hydroxyethoxy)methyl] side‐chain at N‐2 of 2 by an N? C? O bond, reacts with glacial acetic acid or nitrous acid, the side‐chain is cleaved through acidolysis to affford the ring‐closed compound 6‐amino‐3‐methyl‐1,2,4‐triazolo[3,4‐f][1,2,4]triazin‐8(7H)‐one ( 3b ) or compound 4 , respectively. From these results, we suggest a cyclization mechanism that the ring cyclization is dependent on the aromatization of the 1,2,4‐triazine ring, which influence the reactivity and reaction behavior of the π‐deficient 1,2,4‐triazine.  相似文献   

13.
The aza‐Wittig reactions of benzophenone‐, acetophenone‐ and benzaldehyde l‐[(triphenylphosphoranyl‐idene)amino]ethylidenehydrazones (4) with phthalic anhydride, 2,3‐dimethylmaleic anhydride and 7‐oxabi‐cyclo[2,2,l]hept‐5‐ene‐2,3‐dicarboxylic anhydride ( 5a ) provide a new route to 5H,7H‐1,2,4‐triazolo[1,5‐c]‐[1,3]benzoxazepin‐7‐ones 8a‐c or 6H,8H‐1,2,4‐triazolo[1,5‐c][1,3]oxazepin‐6‐ones 8d‐h via the thermal reaction of the expected azinoimine lactones 6 .  相似文献   

14.
Diaminomethylenehydrazones of cyclic ketones 1–5 reacted with ethyl N‐cyanoimidate (I) at room temperature or with bis(methylthio)methylenecyanamide (II) under brief heating to give directly the corresponding spiro[cycloalkane[1′,2′,4′]triazolo[1′,5′,‐a][1′,3′‐5′]triazine] derivatives 7–12 in moderate to high yields. Ring‐opening reaction of the spiro[cycloalkanetriazolotriazine] derivatives occurred at the cycloalkane moiety upon heating in solution to give 2‐alkyl‐5‐amino[1,2,4]triazolotriazines 13–16. Diaminomethylenehydrazones 17–19, of hindered acyclic ketones, gave 2‐methyl‐7‐methylthio[1,2,4]‐triazolo[1,5‐a][1,3,5]triazines 21–23 by the reaction with II as the main products with apparent loss of 2‐methylpropane from the potential precursor, 2‐tert‐butyl‐2‐methyl‐7‐methylthio[1,2,4]triazolo[1,5‐a]‐[1,3,5]triazines 20, in good yields. In general, bis(methylthio)methylenecyanamide II was found to be a favorable reagent to the one‐step synthesis of the spiro[cycloalkanetriazolotriazine] derivatives from the diaminomethylenehydrazones. The spectral data and structural assignments of the fused triazine products are discussed.  相似文献   

15.
A synthesis of bis(α‐bromo ketones) 5a‐c and 6b,c was accomplished by the reaction of bis(acetophenones) 3a‐c and 4b,c with N‐bromosuccinimide in the presence of p‐toluenesulfonic acid (p‐TsOH). Treatment of 5a‐c and 6b,c with each of 4‐amino‐3‐mercapto‐1,2,4‐triazoles 9a,b and 4‐amino‐6‐phenyl‐3‐mercapto‐1,2,4‐triazin‐5(4H)‐ones 13 in refluxing ethanol afforded the novel bis(s‐triazolo[3,4‐b][1,3,4]thiadiazines) 10a‐d and 11a‐c as well as bis(as‐triazino[3,4‐b][1,3,4]thiadiazines) 14a‐c and 15 , respectively, in good yields. Compounds 11b and 11c underwent NaBH4 reduction in methanol to give the target 1,ω‐bis{4‐(6,7‐dihydro‐3‐substituted‐5H‐1,2,4‐triazolo[3,4‐b][1,3,4]thiadiazin‐6‐yl)phenoxy}butanes 12a and 12b in 42 and 46% yields, respectively.  相似文献   

16.
A series of 6‐azacytosines 4a‐4k and 5a‐5c were prepared by nucleophilic cleavage of furan ring of [1]benzofuro[2,3‐e][1,2,4]triazine derivative 1 . Some of them were used for the preparation of derivatives of [1,2,4]triazolo[4,3‐d][1,2,4]triazine ( 6a‐6d ) and tetrazolo[1,5‐d][1,2,4]triazine (7). The reaction of 1 with hydrogen sulfide afforded the corresponding 6‐(2‐hydroxyphenyl)‐2‐phenyl‐5‐thioxo‐4,5‐dihydro‐1,2,4‐tri‐azin‐3(2H)‐one ( 8 ), while with hydrogen selenide 6‐(2‐hydroxyphenyl)‐2‐phenyl‐4,5‐dihydro‐1,2,4‐triazin‐3(2H)‐one ( 9 ) was formed. The prepared compounds were tested for biological activity.  相似文献   

17.
A novel series of 2‐alkoxy(aralkoxy)‐4H‐[1,2,4]triazolo[1,5‐a]quinazolines were synthesized employing N‐cyanoimidocarbonates and 2‐hydrazinobenzoic acid as building blocks. Chemical transformation of the inherent lactam moiety in the targeted 2‐alkoxy(aralkoxy)[1,2,4]triazolo[1,5‐a]quinazolines was offered access to a variety of derivatives. J. Heterocyclic Chem., (2011).  相似文献   

18.
The pyridinium salts 2a,b reacted with dimethyl acetylenedicarboxylate (DMAD) to give the indolizine derivatives 6a,b . Pyridinium salts 2a,b also reacted with pyrazole‐5‐diazonium salt to afford the hydrazonoyl bromides 8a,b , which on treatment with aqueous ethanolic sodium carbonate furnished the 8aH‐1,2,4‐triazolo[4,3‐a]pyridine 10 . When sulfonium bromide 11 was treated with nitrous acid and with pyrazole‐5‐diazonium salt, it afforded the new hydroximoyl and hydrazonoyl halides 12 and 17 , respectively. Compound 12 reacted with 2‐methylthiobenzimidazole to furnish benzimidazo[1,2‐d]‐1,2,4‐oxadiazole derivative 14 . Treatment of either 12 with 3‐phenyl‐5‐aminopyrazole or 17 with triethylamine resulted in the formation of the same product: pyrazolo[1,5‐c]‐1,2,4‐triazole derivative 16 . © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:432–436, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20037  相似文献   

19.
The cyclocondensation of 6-acetyl-4,7-dihydro-5-methyl-7-phenyl[1,2,4]triazolo[1,5-a]pyrimidine (3) with hydroxylamine or hydrazine leads to 3a,4,9,9a-tetrahydro-3,9a-dimethyl-4-phenylisoxazolo-[5,4-d][1,2,4]triazolo[1,5-a]pyrimidine ( 4a ) and 3a,4,9,9a-tetrahydro-3,9a-dimethyl-4-phenyl-1H-pyrazolo[3,4-d][1,2,4]triazolo[1,5-a]pyrimidine ( 4b ), respectively. In the presence of methanolic hydrogen chloride, 4b undergoes a cleavage of the pyrimidine ring to yield (5-amino-1,2,4-triazol-1-yl)(3,5-dimethylpyrazol-4-yl)phenylmethane ( 5 ). The structure determination of the compounds obtained is based on 1H and 13C nmr spectra including NOE measurements.  相似文献   

20.
Synthesis of a new series of [1,2,4]triazolo[1,5‐a]pyrimidin‐6‐one by [4 + 2]cycloaddition reaction of 3‐benzylidineamino[1,2,4]triazole with monophenyl ketene and diphenyl ketene generated in situ from phenylacetyl chloride and diphenylacetyl chloride in the presence of triethylamine is described. The newly synthesized compounds were also tested for antifungal activities against Rhizoctonia solani and Trichoderma sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号