首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
Reactions of hydrogen sulfates of quino‐ and diquino‐annelated 1,4‐dithiins 11 and 2 with DMF/hydroxylamine‐O‐sulfonic acid/Fe++ ion system took place at the α‐quinolinyl positions and led to N,N‐dimethylcarbamoyl and N‐methyl‐N‐formylaminomethyl derivatives 6 , 8 , 12 and 7 , 9 , 13 , respectively. The 1H and 13C NMR spectra of N‐methyl‐N‐formylaminomethyl derivatives 7 , 9 , 13 showed the presence of rotational isomers E and Z regarding to the N‐methyl‐N‐formylaminomethyl substituent. The spectra of 6 , 7 , 8 , 12 and 13 were completely assigned with the use of 1D and 2D NMR techniques. In the case of rotational isomers 7a and 7b , the crucial correlations came from the NOE interaction between the methylene and methyl protons from CH2N(CH3)CHO groups and benzene‐rings protons. Synthesis of 2,3‐dihydro‐1,4‐dithiino[6,5‐e]quinoline 4‐oxide 14 was presented as well.  相似文献   

2.
Eight new 2‐methyl‐4(3H)‐quinazolinones (8a‐8d, 9c, 9d, 10c, 10d) with one or two chlorine atoms in the benzene ring and a 5‐methyl‐1,3‐thiazol‐2‐yl, 4‐methyl‐1,3‐thiazol‐2‐yl, and 5‐ethyl‐1,3,4‐thiadiazol‐2‐yl substituent in position 3 of the heterocyclic ring were synthesized and characterized. The two step procedure (Scheme 1) utilizes chlorosubstituted anthranilic acids (3a‐3d) and acetic anhydride as the starting materials, with the respective chlorosubstituted 2‐methyl‐4H‐3,1‐benzoxazin‐4‐ones (4a‐4d) as the intermediates. The quinazoline derivatives were characterized by their melting points, elemental analyses and the mass, ultraviolet, infrared, and 1H and 13C nmr spectra. The new compounds are expected to be biologically active.  相似文献   

3.
1H and 13C nmr spectra of several N‐ and C‐substituted carbazoles (Series 1, 2, 3 and 4) were measured. Correlations between chemical shifts and substituent constants show that these parameters describe properly the substituent effect on the nmr phenomena. Atomic charge densities for carbazoles of Series 1, 2, 3 and 4 were calculated by using the semi empirical PM3 method. These values also show a linear correlation with the 13C chemical shifts. The synthesis of several carbazole derivatives 1a – 1g, 2a – 2g, 3a – 3j and 4a – 4g have been carried out according to literature procedures. The carbazoles 3i, 3j and 4c have been synthesized and fully characterized for the first time.  相似文献   

4.
The synthesis of new pyrazolo[4,3‐c]β‐carbolines ( 8a,b ) is achieved by condensation of the appropriate aldehyde with 3‐(4‐amino‐1,3‐dimethylpyrazol‐5‐yl)indole ( 4 ) under Pictet‐Spengler reaction conditions. Regioselective cyclization occurred at the usual indole C‐2 position as evidenced from the 1H‐and 13C nmr spectra of 8a,b which lack the pyrrolic H‐2 signal, present in 4 (δ 7.26, 1H, d, Jch‐NH = 2‐5 Hz).  相似文献   

5.
5‐Phenyl‐1,2,4‐thiadiazole‐4‐15N and 3‐methyl‐5‐phenyl‐1,2,4‐thiadiazole‐4‐15N were synthesized from commercially available benazmide‐15N. The mass spectra and the 1H, 13C, and 15N‐nmr spectra of these compounds, which show various long‐range heteronuclear coupling with the 15N‐nucleus, are discussed.  相似文献   

6.
The model morpholine‐1‐carbothioic acid (2‐phenyl‐3H‐quinazolin‐4‐ylidene) amide (1) reacts with phenacyl bromides to afford N4‐(5‐aryl‐1,3‐oxathiol‐2‐yliden)‐2‐phenylquinazolin‐4‐amines (4) or N4‐(4,5‐diphenyl‐1,3‐oxathiol‐2‐yliden)‐2‐phenyl‐4‐aminoquinazoline ( 5 ) by a thermodynamically controlled reversible reaction favoring the enolate intermediate, while the 4‐[4‐aryl‐5‐(2‐phenylquinazolin‐4‐yl)‐1,3‐thiazol‐2‐yl]morpholine ( 8 ) was produced by a kinetically controlled reaction favoring the C‐anion intermediate. 1H nmr, 13C nmr, ir, mass spectroscopy and x‐ray identified compounds ( 4 ), ( 5 ) and ( 8 ).  相似文献   

7.
The reaction of 3‐N‐(2‐mercapto‐4‐oxo‐4H‐quinazolin‐3‐yl)acetamide ( 1 ) with hydrazine hydrate yielded 3‐amino‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 2 ). The reaction of 2 with o‐chlorobenzaldehyde and 2‐hydroxy‐naphthaldehyde gave the corresponding 3‐arylidene amino derivatives 3 and 4 , respectively. Condensation of 2 with 1‐nitroso‐2‐naphthol afforded the corresponding 3‐(2‐hydroxy‐naphthalen‐1‐yl‐diazenyl)‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 5 ), which on subsequent reduction by SnCl2 and HCl gave the hydrazino derivative 6. Reaction of 2 with phenyl isothiocyanate in refluxing ethanol yielded thiourea derivative 7. Ring closure of 7 subsequently cyclized on refluxing with phencyl bromide, oxalyl dichloride and chloroacetic acid afforded the corresponding thiazolidine derivatives 8, 9 and 10 , respectively. Reaction of 2‐mercapto‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 11 ) with hydrazine hydrate afforded 2‐hydrazino‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 12 ). The reactivity 12 towards carbon disulphide, acetyl acetone and ethyl acetoacetate gave 13, 14 and 15 , respectively. Condensation of 12 with isatin afforded 2‐[N‐(2‐oxo‐1,2‐dihydroindol‐3‐ylidene)hydrazino]‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 16 ). 2‐(4‐Oxo‐3‐phenylamino‐3,4‐dihydroquinazolin‐2‐ylamino)isoindole‐1,3‐dione ( 17 ) was synthesized by the reaction of 12 with phthalic anhydride. All isolated products were confirmed by their ir, 1H nmr, 13C nmr and mass spectra.  相似文献   

8.
N‐acetyl‐4‐nitrotryptophan methyl ester (2), N‐acetyl‐5‐nitrotryptophan methyl ester (3), N‐acetyl‐6‐nitrotryptophan methyl ester (4) and N‐acetyl‐7‐nitrotryptophan methyl ester (5) were synthesized through a modified malonic ester reaction of the appropriate nitrogramine analogs followed by methylation with BF3‐methanol. Assignments of the 1H and 13C NMR chemical shifts were made using a combination of 1H–1H COSY, 1H–13C HETCOR and 1H–13C selective INEPT experiments. Copyright © 2008 Crown in the right of Canada. Published by John Wiley & Sons, Ltd  相似文献   

9.
The reaction of the heterocyclic enamine 1 with tosyl azide ( 2 ) leads to the tosylimino derivative 4 of 1,2,4‐triazolo[1,5‐a]pyrimidine. The extrusion of nitrogen from the primary adduct 3 is followed by a 1,2‐shift of a methyl group. The structure determination of 4 is based on 1H and 13C nmr spectra including NOE measurements.  相似文献   

10.
Novel synthesis of (1H)‐pyridin‐2‐one, pyrazolo[1,5‐a]pyrimidine and isoxazole derivatives incorporating N‐methylphthalimide moiety are reported. Reaction of enaminone 2 with malononitrile affords 4. Condensation of 2 with cyanothioacetamide or benzoylacetonitrile affords compounds 6 and 7 respectively. Reaction of 2 with hydrazine hydrate afford 2,3‐dihydrophthalazine‐1,4‐dione ( 10 ). Condensation of 2 with hydroxylamine and 3‐aminopyrazole derivatives affords compounds 12 and 15a,b respectively. Antimicrobial and antifungal activity were determined for representative compounds and most of them showed moderate activity as antimicrobial agents, while compounds 2 and 7 show strong activity against Aspergillus niger. The structure of the newly synthesized compounds was elucidated by elemental analyses and 1H nmr spectra and some cases by 13C nmr investigation.  相似文献   

11.
The synthesis of several 1,2‐diaryl‐1H‐4,5,6,7‐tetrahydro‐1,3‐diazepines 1 by cyclization of N‐aryl‐N'‐benzoyltetramethylenediamines 2 is described. Two alternative synthetic routes to obtain precursors 2 are discussed, being that which employes pyrrolidine as starting material the most convenient. Nucleophilic attack of compounds 1 on methyl iodide affords 1,2‐diaryl‐1H‐4,5,6,7‐tetrahydro‐1,3‐diazepinium iodides 3 . 1H‐nmr spectra of these compounds are unequivocally assigned by means of NOESY experiments, 1H‐nmr spectra of compounds 1 and 3 are analyzed and compared inter se and with those of compounds 1 run in the presence of trifluoroacetic acid‐d. Reduction of compounds 1 with borane leads regiospecifically to N‐aralkyl‐N'‐aryltetramethylenediamines 7 .  相似文献   

12.
The complete assignment of the 1H and 13C NMR spectra of various 2‐acetamido‐3‐mercapto‐3‐methyl‐N‐aryl‐butanamides and 2‐acetamide‐3‐methyl‐3‐nitrososulfanyl‐N‐aryl‐butanamides with p‐methoxy, o‐chloro and m‐chloro substituents is reported. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In the present communication we describe two examples of a new kind of configurationally stable non‐biaryl atropisomers in which the Ar‐N bond is the chiral axis, namely 1‐(o‐nitrophenyl)‐2‐aryl‐3‐methyl‐1,4,5,6‐tetrahydropyrimidinium iodides 1. Stereochemical features of such compounds are analyzed on the basis of their 1H and 13C one‐ and two‐dimensional nmr spectra. A comparison is made with the corresponding amidines 2 .  相似文献   

14.
β‐Carbolines ( 1–5 ) undergo electrophilic aromatic substitution with N‐bromosuccinimide under different experimental conditions. Although 6‐bromo‐nor‐harmane ( la ) obtained by bromination of nor‐harmane ( 1 ) was isolated and fully characterized sometime ago, the other bromoderivatives of nor‐harmane ( 1b‐1e ) and harmane ( 2a‐2e ) were partially described as part of the reaction mixtures. The preparation and subsequent isolation, purification and full characterization of 1b, 1c, 1d, 1e, 2a, 2b, 2c, 2d, 2e are reported (mp, R f, 1H‐nmr, 13C‐nmr and ms) together with the preparation, isolation and charaterization, for the first time, of the bromoderivatives obtained from harmine ( 3a‐3e ), harmol ( 4a, 4b ) and 7‐acetylharmol ( 5a‐5c ). As brominating reagent N‐bromosuccinimide and N‐bromosuccinimide‐silica gel in dichloromethane and in chloroform as well as the β‐carboline ‐ N‐bomosuccinimide solid mixture have been used and their uses have been compared. Semiempirical AMI and PM3 calculations have been performed in order to predict reactivity in terms of the energies of HOMO, HOMO‐LUMO difference and in terms of the charge density of β‐carbolines ( 1–5 ) and bromo‐β‐carbolines ( 1a‐1e, 2a‐2e, 3a‐3e, 4a, 4b, 5a, 5b and 5c ) (Scheme 1). Theoretical and experimental results are discussed briefly.  相似文献   

15.
Some new (S)‐1‐aryl‐N‐(1‐hydroxy‐3‐phenylpropan‐2‐yl)‐5‐methyl‐1 H‐1,2,3‐triazole‐4‐carboxamides 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j have been synthesized and established by 1H and 13C NMR, IR, MS spectra, CHN analyses, and x‐ray diffraction crystallography. The molecular conformation and packing is stabilized by interactions of intermolecular H‐bond O2’‐H2'···O1, O2‐H2···O1’ and intramolecular H‐bond N4’‐H4'N···N3’, N4’‐H4'N···O2’, N4‐H4N···N3, N4‐H4N···O2. The two rings of five numbers were formed by H‐bond in a molecular.  相似文献   

16.
Titled spiroazetidinones 1a , 1b undergo reductive cleavage on treatment with excess lithium aluminum hydride forming 3‐benzhydryl‐1‐methylindole as the main product together with a γ‐amino alcohol depending upon the substituent present on the azetidin‐2‐one ring. Treatment of 1a with Ce(IV) ammonium nitrate affords 2‐hydroxy‐N‐(4‐methoxyphenyl)‐2,2‐diphenylacetamide besides the anticipated N‐unsubstituted 2‐azetidinone, whereas a similar treatment of 1‐benzhydryl‐3,3‐diphenyl‐2‐azetidinone 1b affords the ring expansion product 1,3‐oxazolidin‐4‐one. The products have been characterized on the basis of satisfactory analytical and spectral (IR, 1H and 13C‐NMR, DEPT, HMBC) data and their formation is discussed. J. Heterocyclic Chem., (2011).  相似文献   

17.
Starting from ethyl propionylacetate, and ethyl 2‐ethylacetoacetate we prepared 4‐propyl‐7,8‐, 4‐propyl‐6,7‐, 3‐ethyl‐4‐methyl‐7,8‐ and 3‐ethyl‐4‐methyl‐6,7‐dihydroxy‐2H‐chromenones which were allowed to react with the bis‐dihalides or ditosylates of glycols in DMF/Na2CO3 to afford the 6,7‐ and 7,8‐chromenone derivatives of 12‐crown‐4, 15‐crown‐4 and 18‐crown‐6. The products were identified using ir, 13C and 1H nmr, ms and high resolution mass spectroscopy. The cation selectivities of chromenone crown ethers with Li+, Na+ and K+ cations were estimated from the steady state emission fluorescence spectra of free and cation complexed chromenone macrocyclic ethers in acetonitrile.  相似文献   

18.
The ureidation reactions of 2‐ and 4‐picoline N‐oxides with 2‐chloro‐4,5‐dihydroimidazole are described. A mechanism of novel thioureidation reaction of 4‐picoline N‐oxide with 2‐(4,5‐dihydro‐1H‐imidazol‐2‐ylthioxy)‐4,5‐dihydro‐1H‐imidazole is proposed. Structural assignment is confirmed by 1H and 13C nmr as well as by X‐ray crystallography.  相似文献   

19.
Reaction of ethyl 2‐(3‐pyridyl)acetate 4a or ethyl 2‐methyl‐2‐(3‐pyridyl)acetate 4b , with phenyl chloroformate or methyl chloroform ate, afforded the intermediate pyridinium salt 5 which undergoes regioselective nucleophilic attack at C‐4 upon reaction with a Grignard reagent in the presence of a cuprous iodide catalyst at ?23° to yield the corresponding ethyl 2‐[3‐(1‐phenoxy(methoxy)carbonyl‐4‐aryl(alkyl)‐1,4‐dihydropyridyl)]acetates 6a‐f in 64–96% chemical yield. No product arising from reaction of the ester substituent of the pyridinium salt 5 with the Grignard reagent was observed. The 1H nmr spectra of 6a‐f exhibited dual resonances for the 1,4‐dihydropyridyl H‐2, H‐5 and H‐6 protons at 25° in deuteriochloroform. These dual resonaces were attributed to two different rotameric configurations resulting from restricted rotation about the nitrogen‐to‐carbonyl carbamate bond due to its double bond character. Compound 6 generally exhibited superior analgesic and antiinflammatory activities, compared to the reference drugs aspirin and ibuprofen, respectively. These structure‐activity correlations indicate the 1,4‐dihydropyridyl ring system present in 6 is a suitable bioisostere for the aryl (heteroaryl) ring present in aryl(heteroaryl)acetic acid non‐steroidal antiinflammatory drugs.  相似文献   

20.
Regioselective reactions of morpholine‐1‐carbothioic acid (2‐phenyl‐3H‐quinazolin‐4‐ylidene) amide ( 1 ) with electrophiles and nucleophiles were studied. The compound ( 1 ) reacts with alkyl halides in basic medium to afford S‐substituted isothiourea derivatives, with amines to give 1,1‐disubstituted‐3‐(2‐phenyl‐3H‐quinazolin‐4‐ylidene) thioureas and l‐substituted‐3‐(2‐phenyl‐quinazolin‐4‐yl) thioureas via transami‐nation reaction. The reaction of ( 1 ) with amines in the presence of H2O2 provided N4‐disubstituted‐N'4‐(2‐phenylquinazolin‐4‐yl)morpholin‐4‐carboximidamide via oxidative desulfurization. Estimation of reactivity sites on ( 1 ) was supported using the ab initio (HF/6‐31G**) quantum chemistry calculations. The ir, 1H nmr, 13C nmr, mass spectroscopy and x‐ray identified the isolated products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号