首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Three new 3(4),9(10)‐disecocycloartane peroxy triterpene lactones, named as pseudolarolides Q2, T1, and T2 ( 1 – 3 , resp.), along with five known triterpenoids, were isolated from the seeds of Pseudolarix kaempferi Gord . Their structures were elucidated to be (9R,10R,16R,23R,25R)‐16,23‐epoxy‐9,10‐epidioxy‐3,4:9,10‐disecocycloart‐1(2)‐ene‐3,4:26,23‐diolide ( 1 ), (1R,9R,10S,16R,23S,25R)‐1,4:16,23‐diepoxy‐9,10‐epidioxy‐3,4;9,10‐disecocycloartan‐26(23)‐olid‐3‐oic acid methyl ester ( 2 ), and (1R,9R,10S,16R,23R,25R)‐1,4:16,23‐diepoxy‐9,10‐epidioxy‐3,4;9,10‐disecocycloartan‐26(23)‐olid‐3‐oic acid methyl ester ( 3 ) on the basis of spectroscopic analysis.  相似文献   

2.
Two novel and three new sterol glycosides were isolated from the MeOH extract of the aerial parts of Ajuga salicifolia (L.) Schreber . The structures of the compounds were elucidated as (3R,16S,17S,20R,22S,23S, 24S,25S)‐16,23 : 16,27 : 22,25‐triepoxy‐3‐(β‐D ‐glucopyranosyloxy)coprostigmast‐7‐en‐17‐ol ( 1 ), (3R,16S,17S, 20R,22S,23S,24S,25S)‐16,23 : 16,27 : 22,25‐triepoxy‐3‐{[β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]oxy}coprostigmast‐7‐en‐17‐ol ( 2 ), (3R,16S,17R,20S,22R,24S,25S)‐22,25‐epoxy‐3,27‐bis(β‐D ‐glucopyranosyloxy)coprostigmast‐7‐en‐16‐ol ( 3 ), (3R,16S,17R,20S,22R,24S,25S)‐22,25‐epoxy‐3‐{[β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]oxy}‐27‐(β‐D ‐glucopyranosyloxy)coprostigmast‐7‐en‐16‐ol ( 4 ), and (3R,16R,17S,20R,22S,23S, 24S,25S)‐22,25‐epoxy‐3‐(β‐D ‐glucopyranosyloxy)coprostigmast‐7‐ene‐16,17,23,27‐tetrol 27‐acetate ( 5 ) by means of 1D and 2D NMR spectroscopy and HR‐MALDI mass spectrometry. The novel compounds, which consist of three additional ring systems at the coprostigmastane skeleton, were named ajugasalicioside A ( 1 ) and B ( 2 ), and the new compounds C ( 3 ), D ( 4 ) and E ( 5 ). In our cytotoxicity assays (HeLa cells, Jurkat T cells, and peripheral mononuclear blood cells), ajugasaliciosides A–D specifically inhibited the viability and growth of Jurkat T‐leukemia cells at concentrations below 10 μM . Ajugasalicioside A ( 1 ; (IC50=6 μM ) and C ( 3 ; IC50=3 μM ) were the most active compounds. Ajugasalicioside A ( 1 ) induced cell‐cell contact, inhibited Jurkat T cell proliferation, and up‐regulated mRNA levels of the cell‐cycle regulator cyclin D1, which might be an indication for cell differentiation. Furthermore, 1 down‐regulated the mRNA levels of the NF‐κB subunit p65 in a concentration‐dependent manner. These effects were not found for ajugasalicioside B ( 2 ), which has an additional glucose unit, and the onset of cytotoxicity of 2 (IC50=10 μM ) was delayed by 24 h.  相似文献   

3.
In the Diels–Alder reaction, the preferred addition of dienes syn to the O atom in cross‐conjugated cyclo­hexadienones containing an oxa‐­spiro ring system is observed. The two structures reported here, namely rel‐(1R,4aR,9S,9aS,10R)‐4a,9,9a,10‐tetra­hydro‐9,10‐di­phenyl­spiro­[9,10‐epoxy­anthra­cene‐1(4H),2′‐oxiran]‐4‐one, C27H20O3, and rel‐(1R,4aS,9R,9aS,10S)‐4a,9,9a,10‐tetra­hydro‐9,10‐di­phenyl­spiro­[9,10‐epoxy­anthracene‐1(4H),2′‐oxetane]‐4‐one, C28H22O3, are the minor and sole products, respectively, of the reactions of di­phenyl­isobenzo­furan with two slightly different cyclo­hexadienones. These structures differ in the size of the oxa‐­spiro ring, by one C atom, and in the relative configuration at the spiro­cyclic ring C atom, leading to some minor conformational differences between the two compounds.  相似文献   

4.
The cross‐aldolization of (−)‐(1S,4R,5R,6R)‐6‐endo‐chloro‐5‐exo‐(phenylseleno)‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((−)‐ 25 ) and of (+)‐(3aR,4aR,7aR,7bS)‐ ((+)‐ 26 ) and (−)‐(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazole‐3‐carbaldehyde ((−)‐ 26 ) was studied for the lithium enolate of (−)‐ 25 and for its trimethylsilyl ether (−)‐ 31 under Mukaiyama's conditions (Scheme 2). Protocols were found for highly diastereoselective condensation giving the four possible aldols (+)‐ 27 (`anti'), (+)‐ 28 (`syn'), 29 (`anti'), and (−)‐ 30 (`syn') resulting from the exclusive exo‐face reaction of the bicyclic lithium enolate of (−)‐ 25 and bicyclic silyl ether (−)‐ 31 . Steric factors can explain the selectivities observed. Aldols (+)‐ 27 , (+)‐ 28 , 29 , and (−)‐ 30 were converted stereoselectively to (+)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aR,4aR,7aR,7bS)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]‐furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((+)‐ 62 ), its epimer at the exocyclic position (+)‐ 70 , (−)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((−)‐ 77 ), and its epimer at the exocyclic position (+)‐ 84 , respectively (Schemes 3 and 5). Compounds (+)‐ 62 , (−)‐ 77 , and (+)‐ 84 were transformed to (1R,2R,3S,7R,8S,9S,9aS)‐1,3,4,6,7,8,9,9a‐octahydro‐8‐[(1R,2R)‐1,2,3‐trihydroxypropyl]‐2H‐quinolizine‐1,2,3,7,9‐pentol ( 21 ), its (1S,2S,3R,7R,8S,9S,9aR) stereoisomer (−)‐ 22 , and to its (1S,2S,3R,7R,8S,9R,9aR) stereoisomer (+)‐ 23 , respectively (Schemes 6 and 7). The polyhydroxylated quinolizidines (−)‐ 22 and (+)‐ 23 adopt `trans‐azadecalin' structures with chair/chair conformations in which H−C(9a) occupies an axial position anti‐periplanar to the amine lone electron pair. Quinolizidines 21 , (−)‐ 22 , and (+)‐ 23 were tested for their inhibitory activities toward 25 commercially available glycohydrolases. Compound 21 is a weak inhibitor of β‐galactosidase from jack bean, of amyloglucosidase from Aspergillus niger, and of β‐glucosidase from Caldocellum saccharolyticum. Stereoisomers (−)‐ 22 and (+)‐ 23 are weak but more selective inhibitors of β‐galactosidase from jack bean.  相似文献   

5.
Six new lanostane triterpenes, artabotryols A, B, C1, C2, D, and E ( 1, 2, 3a, 3b, 4 , and 5 , resp.) have been isolated from the seeds of Artabotrys odoratissimus (Annonaceae). Their structures have been established as (3α,22S,25R)‐3‐hydroxy‐22,26‐epoxylanost‐8‐en‐26‐one ( 1 ), (3α,22S,25R)‐22,26‐epoxylanost‐8‐ene‐3,26‐diol ( 2 ), (3α,22S,25R,26R)‐26‐methoxy‐22,26‐epoxylanost‐8‐en‐3‐ol ( 3a ), (3α,22S,25R, 26S)‐26‐methoxy‐22,26‐epoxylanost‐8‐en‐3‐ol ( 3b ), (3α,22S,25R)‐3,22‐dihydroxylanost‐8‐en‐26‐oic acid ( 4 ) and (3α,7α,11α,22S,25R)‐3,7,11‐trihydroxy‐22,26‐epoxylanost‐8‐en‐26‐one ( 5 ) by spectroscopic studies and chemical correlations.  相似文献   

6.
The photooxygenation of (4R,4aS,7R)-4,4a,5,6,7,8-hexahydro-4,7-dimethyl-3H-2-benzopyran ( 16 ) was performed in (i) MeOH, (ii) acetaldehyde, and (iii) acetone at ?78°. The products obtained respectively were (i) (2R)-2-[(1S,4R)-4-methyl-2-oxocyclohexyl]propyl formate ( 17 ; 72% yield), (ii) 17 (54.5%), (1R,4R,4aS,7R)-3,4,4a,5,6,7-hexahydro-4,7-dimethyl-1H-2-benzopyran-2-yl hydroperoxide ( 19 ; 16.7%), a 12:1 ratio of (3R,4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,7,10-trimethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4-trioxane ( 20 ) and its C(3)-epimer 21 (17%), together with evidence for the 1,2-dioxetane ( 22 ) originating from the addition of dioxygen to the re-re face of the double bond of 16 , and iii) unidentified products and traces of 22 . Addition of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) to the acetone solution of 16 after photooxygenation afforded (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4,-trioxane ( 23 , 40%). The photooxygenation of 16 in CH2Cl2 at ?78° followed by addition of acetone and Me3SiOTf afforded 17 (11%), 23 (59%), and (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[8a,1-e]-1,2,4-trioxane ( 24 ; 5%. Repetition of the last experiment, but replacing acetone by cyclopentanone, gave 17 (16%), (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[1,8a-e]-1,2,4-trixane] ( 25 ; 61%), and (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[8a,1-e]-1,2,4-trixane] ( 26 , 4%). The X-ray analysis of 23 was performed, which together with the NMR data, established the structure of the trioxanes 20, 21, 24, 25 , and 26 . Mechanistic and synthesis aspects of these reactions were discussed in relation to the construction of the 1,2,4-trioxane ring in arteannuin and similar molecules.  相似文献   

7.
The crystal structures of (1R,4R,5S,8S)-9,10-dimethylidentricyclo[6.2.1.02,7]undec2(7)-ene-4,5-dicarboxylic anhydride ( 3 ), (1R,4R,5S,8S)11-isopropylidene-9,10-dimethylidenetricyclo[6.2.1.m2,7]undec-2(7)-ene-4,5-dicarboxylic anhydride ( 6 ), (1R,4R,5S8S)-9,10-dimethylidenetricyclo[6.2.2.02,7]dodec-2(7)-ene-4,5-dicarboxylic anhydride ( 9 ), (1R4R5S8S)-TRICYCLO[6.2.2.02,7]dodeca-2(7), 9-diene-4,5-dicarboxylic anhydride ( 12 ) and (4R,5S)-tricyclo[6.1.1.02.7]dec-2(7)-ene-4,5-dicarboxylic acid ( 16 ) were established by X-ray diffraction. The alkyl substituents onto the endocyclic bicyclo[2.2.1]hept-2-ene double bond deviate from the C(1), C(2), C(3), C(4), plane by 13.5°4 in 3 and by 13.9° in 6 , leaning toward the endo-face. No such out-of-plane deformations were observed with the bicyclo[2.2.2]oct-2-ene derivatives 9 and 12 . The exocyclic s-cis-butadiene moieties in 3, 6 and 9 do not deviate significantly from planarity. The deviation from planarity of the double bond n bicyclo[2.2.1]hept-2-ene derivatives and planarity in bicyclo[2.2.2]oct-2-ene analogues is shown to be general by analysis of all known structures in the Cambridge Crystallographic Data File. The non-planarity of the bicyclo[2.2.1]hept-2-ene double bond cannot be attributed only to bond-angle deformations which would favour rehybridizatoin of the olefinic C-atoms since the double bond in the more strained bicyclo[2.1.1]hex-2-ene drivative 16 deviates from planarity by less than 4°.  相似文献   

8.
A new, non‐iterative method for the asymmetric synthesis of long‐chain and polycyclic polypropanoate fragments starting from 2,2′‐ethylidenebis[3,5‐dimethylfuran] ( 2 ) has been developed. Diethyl (2E,5E)‐4‐oxohepta‐2,5‐dienoate ( 6 ) added to 2 to give a single meso‐adduct 7 containing nine stereogenic centers. Its desymmetrization was realized by hydroboration with (+)‐IpcBH2 (isopinocampheylborane), leading to diethyl (1S,2R,3S,4S,4aS,7R,8R,8aR,9aS,10R,10aR)‐1,3,4,7,8,8a,9,9a‐octahydro‐3‐hydroxy‐2,4,5,7,10‐pentamethyl‐9‐oxo‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐1,8‐dicarboxylate ((+)‐ 8 ; 78% e.e.). Alternatively, 7 was converted to meso‐(1R,2R,4R,4aR,5S,7S,8S,8aR,9aS,10s,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐2,4,5,7,10‐pentamethyl‐2H‐10H‐2,4a : 7,10a‐diepoxyanthracene‐3,6,9(4H,5H,7H)‐trione ( 32 ) that was reduced enantioselectively by BH3 catalyzed by methyloxazaborolidine 19 derived from L ‐diphenylprolinol giving (1S,2S,4S,4aS,5S,6R,7R,8R,8aS,9aR,10R,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐6‐hydroxy‐2,4,5,7,10‐pentamethyl‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐3,9(4H,7H)‐dione ((−)‐ 33 ; 90% e.e.). Chemistry was explored to carry out chemoselective 7‐oxabicyclo[2.2.1]heptanone oxa‐ring openings and intra‐ring C−C bond cleavage. Polycyclic polypropanoates such as (1R,2S,3R,4R,4aR,5S,6R,7S,8R,9R,10R,11S,12aR)‐1‐(ethoxycarbonyl)‐1,3,4,7,8,9,10,11,12,12a‐decahydro‐3,11‐dihydroxy‐2,4,5,7,9‐pentamethyl‐12‐oxo‐2H,5H‐2,4a : 6,9 : 6,11‐triepoxybenzocyclodecene‐10,8‐carbolactone ( 51 ), (1S,2R,3R,4R,4aS,5S,7S,8R,9R,10R,12S,12aS)‐1,10‐bis(acetoxymethyl)tetradecahydro‐8‐(methoxymethoxy)‐2,4,5,7,9‐pentamethyl‐3,9‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}‐6,11‐epoxycyclodecene‐4a,6,11,12‐tetrol ((+)‐ 83 ), and (1R,2R,3R,4aR,4bR,5S,6R, 7R,8R,8aS,9S,10aR)‐3,5‐bis(acetoxymethyl)‐4a,8a‐dihydroxy‐1‐(methoxymethoxy)‐2,6,8,9,10a‐pentamethyl‐2,7‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}dodecahydrophenanthrene‐4,10‐dione ( 85 ) were obtained in few synthetic steps.  相似文献   

9.
Four new 9,10‐secocycloartane (=9,19‐cyclo‐9,10‐secolanostane) triterpenoidal saponins, named huangqiyenins G–J ( 1 – 4 , resp.), were isolated from Astragalus membranaceus Bunge leaves. The acid hydrolysis of 1 – 4 with 1M aqueous HCl yielded D ‐glucose, which was identified by GC analysis after treatment with L ‐cysteine methyl ester hydrochloride. The structures of 1 – 4 were established by detailed spectroscopic analysis as (3β,6α,10α,16β,24E)‐3,6‐bis(acetyloxy)‐10,16‐dihydroxy‐12‐oxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 1 ), (3β,6a,10α,24E)‐3,6‐bis(acetyloxy)‐10‐hydroxy‐12,16‐dioxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 2 ), (3β,6α,9α,10α,16β,24E)‐3,6‐bis(acetyloxy)‐9,10,16‐trihydroxy‐9,19‐cyclo‐9,10‐secolanosta‐11,24‐dien‐26‐yl β‐D ‐glucopyranoside ( 3 ), and (3β,6α,10α,24E)‐3,6‐bis(acetyloxy)‐10‐hydroxy‐16‐oxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 4 ).  相似文献   

10.
Nine new sesquiterpenes, i.e., dendronobilins A–I ( 1 – 9 ), with copacamphane‐type ( 1 ), picrotoxane‐type ( 2 – 6 ), muurolene‐type ( 7 ), alloaromadendrane‐type ( 8 ), and cyclocopacamphane‐type ( 9 ) skeletons, were isolated from the 60% EtOH extract of the stems of Dendrobium nobile. Their structures were established as (1R,2R,4S,5S,6S,8S,9R)‐2,8‐dihydroxycopacamphan‐15‐one ( 1 ), (2β,3β,4β,5β)‐2,4,11‐trihydroxypicrotoxano‐3(15)‐lactone ( 2 ), (2β,3β,5β,9α,11β)‐2,11‐epoxy‐9,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 3 ), (2β,3β,5β,12R*)‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 4 ), (2β,3β,5β,12S*)‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 5 ), (2β,3β,5β,9α)‐9,10‐cyclo‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 6 ), (9β,10α)‐muurol‐4‐ene‐9,10,11‐triol ( 7 ), (10α)‐alloaromadendrane‐10,12,14‐triol ( 8 ), and (5β)‐cyclocopacamphane‐5,12,15‐triol ( 9 ) on the basis of spectroscopic analysis. The absolute configuration of compound 1 was tentatively assigned as (1R,2R,4S,5S,6S,8S,9R) according to its CD spectrum and the octant rule. Compounds 1 and 4 – 9 were inactive in our preliminary in vitro immunomodulatory bioassay.  相似文献   

11.
The isolation and structure elucidation of two new oleanane‐type triterpene glycosides, 29‐(β‐D ‐glucopyranosyloxy)‐2α,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid (=(2α,3β,4α,29α)‐29‐(β‐D ‐glucopyranosyloxy)‐2,3,23‐trihydroxyolean‐12‐en‐28‐oic acid; 1 ) and its C(20)‐epimer, 30‐(β‐D ‐glucopyranosyloxy)‐2α,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid (=(2α,3β,4α,29β)‐29‐β‐D ‐glucopyranosyloxy)‐2,3,23‐trihydroxyolean‐12‐en‐28‐oic acid; 2 ), and a novel nortriterpene glycoside, (17S)‐2α,18β,23‐trihydroxy‐3,19‐dioxo‐19(18→17)‐ abeo‐28‐norolean‐12‐en‐25‐oic acid β‐D ‐glucopyranosyl ester (=(1R,2S,4aS,4bR,6aR,7R,9R,10aS,10bS)‐3,4,4a,4b,5,6,6a,7,8,9,10,10a,10b,11‐tetradecahydro‐1‐hydroxy‐7‐(hydroxymethyl)‐3′,4′,4a,4b,7‐pentamethyl‐2′,8‐ dioxospiro[chrysene‐2(1H),1′‐cyclopentane]‐10a‐carboxylic acid β‐D ‐glucopyranosyl ester; 3 ) from Phlomis viscosa (Lamiaceae) are reported. The structures of the compounds were asigned by means of spectroscopic (IR, 1D‐ and 2D‐NMR, and LC‐ESI‐MS) and chemical (acetylation) methods.  相似文献   

12.
Five new steroidal glycosides were isolated from the roots of Balanites aegyptiaca, a widely used African medicinal plant. On the basis of spectroscopic and chemical evidence, their structures were determined as (3β,12α,14β,16β)‐12‐hydroxycholest‐5‐ene‐3,16‐diyl bis(β‐D ‐glucopyranoside) ( 1 ), (3β,20S,22R,25R)‐ and (3β,20S,22R,25S)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurost‐5‐en‐3‐yl β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→4)[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 2 and 3 , resp.), and (3β,20S,22R,25R)‐ and (3β,20S,22R,25S)‐spirost‐5‐en‐3‐yl β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→4)[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 4 and 5 , resp.)  相似文献   

13.
Two new skeletal triterpene lactones, spiromarienonols A ( 1a ) and B ( 2a ), were isolated from the stem bark of Abies mariesii Masters (Pinaceae). Based on spectral data and biogenetic considerations, their unique three‐dimensional structures were determined to be (3R,7S,9R,23R)‐ ( 1a ) and (3R,7S,9S,23R)‐3,7‐dihydroxy‐8‐oxo‐7(8→9)abeo‐lanost‐24‐eno‐26,23‐lactone ( 2a ). Moreover, the potent activity of abiesenonic acid methyl ester ( 3 ) and abieslactone ( 4 ) against a disease‐oriented panel of 39 human cancer cell lines were investigated.  相似文献   

14.
The title compounds, (2R,2′′S,3b′S,4a′R,7b′S,8a′R)‐per­hydro­di­spiro­[furan‐2,3′‐di­cyclo­penta­[a,e]­pentalene‐7′,2′′‐furan]‐5,5′′‐dione, C20H26O4, and (3aR,3bR,4aR,4bS,5aS,8aR,8bR,9aR,9bS,10aS)‐per­hydro­dipentaleno­[2,1‐a:2′,1′‐e]­pentalene‐1,6‐dione, C20H26O2, are intermediates identified during the synthesis of dodecahedrane. Crystallographic studies have established the ring‐junction stereochemistry for these important intermediates. All the ring junctions are cis‐fused, and the molecular packing is stabilized by van der Waals interactions.  相似文献   

15.
As part of a project studying the secondary metabolites extracted from the Chilean flora, we report herein three new β‐agarofuran sesquiterpenes, namely (1S,4S,5S,6R,7R,8R,9R,10S)‐6‐acetoxy‐4,9‐dihydroxy‐2,2,5a,9‐tetramethyloctahydro‐2H‐3,9a‐methanobenzo[b]oxepine‐5,10‐diyl bis(furan‐3‐carboxylate), C27H32O11, ( II ), (1S,4S,5S,6R,7R,9S,10S)‐6‐acetoxy‐9‐hydroxy‐2,2,5a,9‐tetramethyloctahydro‐2H‐3,9a‐methanobenzo[b]oxepine‐5,10‐diyl bis(furan‐3‐carboxylate), C27H32O10, ( III ), and (1S,4S,5S,6R,7R,9S,10S)‐6‐acetoxy‐10‐(benzoyloxy)‐9‐hydroxy‐2,2,5a,9‐tetramethyloctahydro‐2H‐3,9a‐methanobenzo[b]oxepin‐5‐yl furan‐3‐carboxylate, C29H34O9, ( IV ), obtained from the seeds of Maytenus boaria and closely associated with a recently published relative [Paz et al. (2017). Acta Cryst. C 73 , 451–457]. In the (isomorphic) structures of ( II ) and ( III ), the central decalin system is esterified with an acetate group at site 1 and furoate groups at sites 6 and 9, and differ at site 8, with an OH group in ( II ) and no substituent in ( III ). This position is also unsubstituted in ( IV ), with site 6 being occupied by a benzoate group. The chirality of the skeletons is described as 1S,4S,5S,6R,7R,8R,9R,10S in ( II ) and 1S,4S,5S,6R,7R,9S,10S in ( III ) and ( IV ), matching the chirality suggested by NMR studies. This difference in the chirality sequence among the title structures (in spite of the fact that the three skeletons are absolutely isostructural) is due to the differences in the environment of site 8, i.e. OH in ( II ) and H in ( III ) and ( IV ). This diversity in substitution, in turn, is responsible for the differences in the hydrogen‐bonding schemes, which is discussed.  相似文献   

16.
(5S,9S,17S)‐17‐Hydroxy‐9(10→5)‐abeo‐estr‐4‐ene‐3,10‐dione, C18H26O3, (II), and (5R,9R,17S)‐17‐hydroxy‐9(10→5)‐abeo‐estr‐4‐ene‐3,10‐dione, C18H26O3, (III), are equimolecular products of the FeII‐induced transposition of 10β‐hydro­peroxy‐17β‐hydroxyestr‐4‐en‐3‐one, (I). With respect to reagent mol­ecules, the configuration at C9 is retained for (II) while it is inverted in (III). The conformations of the five‐ and six‐membered rings are compared.  相似文献   

17.
Biotransformation of (±)‐threo‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acids (threo‐(7,8‐2H2)‐ 3 ) in Saccharomyces cerevisiae afforded 5,6‐dihydroxy(5,6‐2H2)dodecanoic acids (threo‐(5,6‐2H2)‐ 4 ), which were converted to (5S,6S)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6S)‐(5,6‐2H2)‐ 7 ) with 80% e.e. and (5S,6S)‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone ((5S,6S)‐5,6‐2H2)‐ 8 ). Further β‐oxidation of threo‐(5,6‐2H2)‐ 4 yielded 3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ), which were converted to (3R,4R)‐3‐hydroxy(3,4‐2H2)decano‐4‐lactone ((3R,4R)‐ 9 ) with 44% e.e. and converted to 2H‐labeled decano‐4‐lactones ((4R)‐(3‐2H1)‐ and (4R)‐(2,3‐2H2)‐ 6 ) with 96% e.e. These results were confirmed by experiments in which (±)‐threo‐3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ) were incubated with yeast. From incubations of methyl (5S,6S)‐ and (5R,6R)‐5,6‐dihydroxy(5,6‐2H2)dodecanoates ((5S,6S)‐ and (5R,6R)‐(5,6‐2H2)‐ 4a ), the (5S,6S)‐enantiomer was identified as the precursor of (4R)‐(3‐2H1)‐ and (2,3‐2H2)‐ 6 ). Therefore, (4R)‐ 6 is synthesized from (3S,4S)‐ 5 by an oxidation/keto acid reduction pathway involving hydrogen transfer from C(4) to C(2). In an analogous experiment, methyl (9S,10S)‐9,10‐dihydroxyoctadecanoate ((9S,10S)‐ 10a ) was metabolized to (3S,4S)‐3,4‐dihydroxydodecanoic acid ((3S,4S)‐ 15 ) and converted to (4R)‐dodecano‐4‐lactone ((4R)‐ 18 ).  相似文献   

18.
A phytochemical investigation of the MeOH extract of Valeriana fauriei Briq . roots resulted in the isolation of two new sesquiterpenes, isovalerianin A (=(1β,4Z,6β,8α)‐8‐(acetyloxy)‐1,10‐dihydroxy‐6,11‐cyclogermacr‐4‐en‐15‐al=rel‐(1R,2Z,6S,7R,9R,10S)‐9‐(acetyloxy)‐6,7‐dihydroxy‐7,11,11‐trimethylbicyclo[8.1.0]undec‐2‐ene‐3‐carboxaldehyde; 1 ) and valerianin C (=(2α,3α,6α,8α)‐3‐(acetyloxy)‐2,4,8‐trihydroxyguai‐1(10)‐ene‐12,6‐lactone=rel‐(3R,3aS,4R,7S,8S,9R,9aR,9bR)‐8‐(acetyloxy)‐3a,4,5,7,8,9,9a,9b‐ octahydro‐4,7,9‐trihydroxy‐3,6,9‐trimethylazuleno[4,5‐b]furan‐2(3H)‐one; 2 ), together with six known compounds, i.e., camphor, methyl 4‐hydroxybenzoate, 2‐methoxybenzoic acid, benzoic acid, quercetin, and kaempferol. The structures of the compounds were established by detailed spectral analysis and comparison with previously reported data.  相似文献   

19.
The inositol rings in (1S,2R,3R,4S,5S,6R,7S,8S,11S)‐myo‐inositol‐1,2‐camphor acetal {systematic name: (1R,2S,3S,4R,5S,6R)‐5,6‐[(1S,2S,4S)‐1,7,7‐trimethyl­bicyclo­[2.2.1]heptane‐2,2‐diyldi­oxy]cyclohexane‐1,2,3,4‐tetrol}, C16H26O6, and (1R,2S,3S,4R,5R,6S,7R/S,8S,11S)‐myo‐inositol‐1,2‐camphor acetal trihydrate {systematic name: (1S,2R,3R,4S,5R,6S)‐5,6‐[(1S,4S,6R/S)‐1,7,7‐trimethyl­bicyclo­[2.2.1]heptane‐2,2‐diyldi­oxy]cyclohexane‐1,2,3,4‐tetrol trihydrate}, C16H26O6·3H2O, adopt flattened chair conformations with the latter crystal containing two stereoisomers in a 0.684 (2):0.316 (2) ratio, similar to that found both in solution and by calculation. Both mol­ecules pack in the crystals in similar two‐dimensional layers, utilizing strong O—H⋯O hydrogen bonds, with the trihydrate cell expanded to incorporate the additional hydrogen‐bonded water mol­ecules.  相似文献   

20.
Catalytic hydrogenation of the Δ3-unsaturated (9R,10 R)- and (9S,10 S)-epoxyenol lactones 3a, b. , and 4a, b. , respectively, affords, in addition to the expected saturated epoxylactones 5a, b and 7a, b , also open-chain products, i.e. the diastereoisomeric (9R,10R)- and (9S,10S)-9,10-expoxy-8-oxo-4,5-secosteroklastan-5-oic acids 6a, b. and 8a, b. Alkaline hydrolysis of the lactone ring of compounds 5 and 7 and subsequent acetylation of the corresponding hydroxy derivatives give as the major products the open-chain, diasteroisomeric (9R,10R)- and (9S,10S)-4-acetoxy-9,10-epoxy-methyl esters 9a, b and 11a, b , respectively, and, but only in the androstane series, the tetrahydropyran derivatives 10a and 12a , as the minor components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号