首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modification of capillary electrophoresis (CE) capillaries by poly(hydroxyethyl methacrylate) (poly(HEMA), poly(diethylene glycol monomethacrylate) (poly(DEGMA) and poly(triethylene glycol monomethacrylate) (poly(TEGMA), was studied. Methods based on physical adsorption of the modifier and on its chemical binding were compared on the basis of the electroosmotic flow (EOF) reproducibility, the EOF dependence on the pH, the symmetry of the peak of positively charged tyramine, the stability of the coating and the separation of standard and milk proteins in the modified capillaries. Reproducible coatings were obtained by chemical binding of the polymers to the capillary walls and by coating with a solution of a polymer, as also demonstrated by the atomic force microscopy.  相似文献   

2.
The direct preparation of grafting polymer brushes from commercial poly (vinylidene fluoride) (PVDF) films with surface‐initiated atom transfer radical polymerization (ATRP) is demonstrated. The direct initiation of the secondary fluorinated site of PVDF facilitated grafting of the hydrophilic monomers from the PVDF surface. Homopolymer brushes of 2‐(N,N‐dimethylamino)ethyl methacrylate (DMAEMA) and poly (ethylene glycol) monomethacrylate (PEGMA) were prepared by ATRP from the PVDF surface. The chemical composition and surface topography of the graft‐functionalized PVDF surfaces were characterized by X‐ray photoelectron spectroscopy, attenuated total reflectance/Fourier transform infrared spectroscopy, and atomic force microscopy. A kinetic study revealed a linear increase in the graft concentration of poly[2‐(N,N‐dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[poly(ethylene glycol) monomethacrylate] (PPEGMA) with the reaction time, indicating that the chain growth from the surface was consistent with a controlled or living process. The living chain ends were used as macroinitiators for the synthesis of diblock copolymer brushes. The water contact angles on PVDF films were reduced by the surface grafting of DMAEMA and PEGMA. Protein adsorption experiments revealed a substantial antifouling property of PPEGMA‐grafted PVDF films and PDMAEMA‐grafted PVDF films in comparison with the pristine PVDF surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3434–3443, 2006  相似文献   

3.
王延梅 《高分子科学》2013,31(4):691-701
A series of double-hydrophilic double-grafted PMA-g-PEG/PDMA copolymers, which contained poly(methacrylate) (PMA) as backbone, poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide) (PDMA) as side chains synthesized successfully by using reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP), were used as physical coatings for the evaluation of protein-resistant properties by capillary electrophoresis (CE). Electroosmotic flow (EOF) measurement results showed that the PMA-g-PEG/PDMA copolymer coated capillaries could suppress electroosmotic mobility in a wide pH range (pH = 2.8–9.8) and EOF mobility decreased with the increase of copolymer molecular mass and PDMA content. At the same time, protein recovery, theoretical plate number of separation and repeatability of migration time demonstrated that antifouling efficiency was improved with the increase of molecular mass and PEG content.  相似文献   

4.
A simple one-step method for the chloromethylation of polyimide (PI) under mild conditions was used to introduce benzyl chloride groups into PI film surface. Covalently tethered hydrophilic polymer brushes of poly(ethylene glycol) monomethacrylate (PEGMA) and glycidyl methacrylate (GMA) were prepared via surface initiated atom-transfer radical polymerization (ATRP) from the chloromethylated PI surfaces using benzyl chloride groups as the active ATRP initiators. A kinetics study indicated that the chain growth from the films was in agreement with a controlled process. The dormant chain ends of the grafted polymer on the PI films could reinitiate the consecutive surface-initiated ATRP to prepare surface-functionalized diblock copolymer brushes on the PI films. The modified surface was characterized by X-ray photoelectron spectroscopy (XPS) after each modification stage. Protein adsorption experiments indicated that the PI-P(PEGMA) membrane exhibited substantially improved anti-fouling properties compared to the pristine PI surface.  相似文献   

5.
Surface-initiated atom-transfer radical polymerization (ATRP) of poly(ethylene glycol) monomethacrylate (PEGMA) was carried out on the hydrogen-terminated Si(100) substrates with surface-tethered alpha-bromoester initiator. Kinetic studies confirmed an approximately linear increase in polymer film thickness with reaction time, indicating that chain growth from the surface was a controlled "living" process. The "living" character of the surface-grafted PEGMA chains was further ascertained by the subsequent extension of these graft chains, and thus the graft layer. Well-defined polymer brushes of near 100 nm in thickness were grafted on the Si(100) surface in 8 h under ambient temperature in an aqueous medium. The hydroxyl end groups of the poly(ethylene glycol) (PEG) side chains of the grafted PEGMA polymer were derivatized into various functional groups, including chloride, amine, aldehyde, and carboxylic acid groups. The surface-functionalized silicon substrates were characterized by reflectance FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS). Covalent attachment and derivatization of the well-defined PEGMA polymer brushes can broaden considerably the functionality of single-crystal silicon surfaces.  相似文献   

6.
This paper presents a new approach to improving the physical stability of biodegradable poly‐(ethylene glycol)‐block‐poly[(DL ‐lactic acid)‐co‐(glycolic acid)] (PEG‐PLGA) micelles. A hydroxyl‐terminated PEG monomethacrylate (PEGmer) macroinitiator was used to prepare a methacrylate‐end‐capped PEG‐PLGA diblock copolymer by the ring‐opening polymerization of D ,L ‐lactide and glycolide. The surface‐exposed methacrylate groups in the shell layer of the micelles can be polymerized with N‐vinyl‐2‐pyrrolidone. The resulting micelles show substantially enhanced stability.  相似文献   

7.
Cao F  Zhu X  Luo Z  Xing J  Shi X  Wang Y  Cheradame H 《Electrophoresis》2011,32(20):2874-2883
A novel noncovalent adsorbed coating for CE has been prepared and explored. This coating was based on quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(ethylene oxide)-block-poly(2-(dimethylamino)ethyl methacrylate) (QDED) triblock copolymer which was synthesized by atomic transfer radical polymerization (ATRP) in our laboratory. The polycationic polymer and the negatively charged fused-silica surface attracted each other through electrostatic interactions and hydrogen bonds. It was demonstrated that the coated capillaries provided an electroosmotic flow with reverse direction, and the magnitude of the electroosmotic flow can be modulated by varying the molecular mass of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) block and pH value of the buffer. The effects of the molecular mass of PDMAEMA block in QDED triblock copolymer and pH value of the buffer on the separation of basic proteins were investigated in detail. The triblock copolymer coatings showed higher separation efficiency, better migration time repeatability and would apply to wider range of pH than bare fused-silica capillary when used in separating proteins. Proteins from egg white were also separated through this QDED triblock copolymer-coated capillary. These results demonstrated that the QDED triblock copolymer coatings are suitable for analyzing biosamples.  相似文献   

8.
The suspension copolymerization of methyl methacrylate with hydroxy‐functional poly(ethylene glycol) monomethacrylate (PEGMA) by atom transfer radical polymerization (ATRP) yielded soluble, controlled‐molecular‐weight amphiphilic copolymers (weight‐average molecular weight/number‐average molecular weight <1.3). Despite extensive partitioning of PEGMA into the water phase, copolymers containing up to 24 mol % PEGMA were formed in the oil phase, from comonomer feeds containing 30 mol % PEGMA. Conversions by suspension polymerization were comparable to those obtained by solution polymerization, at over 70%. Suspension copolymers with high PEGMA contents contained high‐molecular‐weight polymer formed by uncontrolled polymerization, unless poly(vinyl pyrrolidone) was added to displace the growing polymer from the interface. The addition of diethylene glycol dimethacrylate gave capsules at 17 mol % PEGMA with ATRP, whereas conventional free‐radical polymerization required 24 mol % PEGMA to form capsules. The lower PEGMA level required for capsule formation with ATRP was attributed to the lower rates of propagation and crosslinking and to improved incorporation of PEGMA into the final gels. Suspension ATRP with 24 mol % PEGMA in the feed gave two‐layer capsule walls consisting of an inner layer visible by transmission electron microscopy and an outer layer visible by both transmission electron microscopy and environmental scanning electron microscopy, which indicated a compositional gradient across the capsule wall. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 156–171, 2006  相似文献   

9.
Crystalline polymeric nanospheres composed of poly{stearyl methacrylate (SMA)-co-poly(ethylene glycol) monomethacrylate (PEGm)}s were prepared by the dispersion radical polymerization of SMA and PEGm in an ethanol/water solution. Scanning electron microscopy showed that the nanospheres were highly spherical, and had a narrow size distribution. Electron spectroscopy for chemical analysis and X-ray diffraction studies of the nanospheres suggested a core-corona-type structure; the hydrophilic PEGm corona accumulated on the nanosphere surface, while the hydrophobic SMA core formed a layered structure. Heat treatment caused a melting of the SMA layers, but successive cooling allowed it to re-form. Accompanying this reversible order-disorder transition, the nanospheres also showed a reversible aggregation/deaggregation behavior in their water-dispersion state.  相似文献   

10.
张淼  王雨晨  MUHAMMADAtif  陈丽娟  王延梅 《色谱》2020,38(9):1085-1094
制备了一种对溶菌酶具有可控吸附性能的混合刷涂层毛细管,用于毛细管电泳在线富集溶菌酶以提高其检测灵敏度。首先,分别通过阳离子开环聚合和可逆加成-断裂链转移(RAFT)聚合合成聚(2-甲基-2-噁唑啉)(PMOXA)和聚丙烯酸(PAA),然后将甲基丙烯酸缩水甘油酯(GMA)分别与PMOXA和PAA通过自由基共聚和RAFT聚合合成出聚(2-甲基-2-噁唑啉)-r-甲基丙烯酸缩水甘油酯(PMOXA-r-GMA)和聚丙烯酸-b-聚甲基丙烯酸缩水甘油酯(PAA-b-PGMA)。将PMOXA-r-GMA和PAA-b-PGMA的混合溶液以一定比例加入到毛细管内,通过加热即可制备出基于PMOXA和PAA的混合刷涂层毛细管。X射线光电子能谱(XPS)对毛细管原材料的表面组成研究结果表明,当混合溶液质量浓度为20 g/L、PMOXA-r-GMA和PAA-b-PGMA质量比为1:1时,所得涂层中羧基的含量随着PAA链长的增加而增加;异硫氰酸荧光素标记溶菌酶(FITC-溶菌酶)吸附实验结果显示,通过改变环境的pH和离子强度(I)可以调控涂层毛细管对溶菌酶的吸附和释放,在pH 7(I=10-5mol/L)条件下,毛细管可以吸附大量的溶菌酶,当条件变为pH 3(I=10-1mol/L)时,吸附的溶菌酶可以被释放出来。将这种具有溶菌酶可控吸附性能的涂层毛细管用于毛细管电泳在线富集溶菌酶,当PAA链长是PMOXA链长的2.2倍时,溶菌酶的灵敏度增强因子为17.69,检出限为8.7×10-5g/L;同一天内对溶菌酶连续测定5次以及连续测定5天,峰面积的日内、日间相对标准偏差(RSD)分别为2.9%和4.1%,迁移时间的日内、日间RSD分别为0.9%和2.1%。涂层的制备只需一步,简单易行,而且涂层具有很好的稳定性。本研究为毛细管电泳分析痕量蛋白质提供了一种简单有效的方法。  相似文献   

11.
Two new methods of inner capillary coating with poly(vinyl alcohol) (PVAL) have been investigated and evaluated by performing DNA capillary electrophoresis (CE) using PVAL as a separation medium and by measuring the electroosmotic flow (EOF) mobility. The treatment of capillaries with a silanol-group modified PVAL (PVAL-Si) has been found to give good coating effects for improving the resolution of DNA CE and for reducing the EOF. This coating must be effectively achieved by combining the adsorptive property of PVAL chains onto silica with the reaction between the silanol groups of PVAL-Si and the silica surface. The adsorption of PVAL onto silica has been observed by using atomic force microscopy (AFM) for PVAL-Si as well as for a nonmodified PVAL as a control. The coating with PVAL that links to the capillary wall surface with more hydrolytically stable bonding, -Si-C-, has been formed by performing the Grignard reaction, followed by in-capillary polymerization of vinyl acetate (VAc) and hydrolysis. This coating has been found to be effective for improving the resolution of DNA CE and for reducing the EOF.  相似文献   

12.
Surface‐initiated atom transfer radical polymerization (SI‐ATRP) is successfully applied to electrospun constructs of poly(L ‐lactide). ATRP macroinitiators are adsorbed through polyelectrolyte complexation following the introduction of negative charges on the polyester surface through its blending with a six‐armed carboxy‐terminated oligolactide. SI‐ATRP of glycerol monomethacrylate (GMMA) or 2‐(N,N‐diethylamino)ethyl methacrylate (DEAEMA) allows then to grow surface films with controllable thickness, and in this way also to control the wetting and interactions of the construct.  相似文献   

13.
Encapsulation of ionic liquid, 1-hexyl-3-methylimidazolium bis(trifluoromethane sulfonyl)amide ([Hmim][TFSA]), was carried out by microsuspension polymerization of ethylene glycol dimethacrylate (EGDM) utilizing the self-assembling of phase-separated polymer method, which had been proposed by us for the preparation of hollow polymer particles. After the optimization of the polymerization conditions, ionic liquid-encapsulated polymer particles, which have smooth surface morphology and a single hollow structure, were successfully prepared. Encapsulation efficiency of [Hmim][TFSA] was significantly improved from about 20–70 % by changing the shell polymer from polyEGDM homopolymer to poly(EGDM-butyl methacrylate) (50/50, w/w) copolymer, which was likely to have relatively low affinity for [Hmim][TFSA]. Additionally, ionic liquid-encapsulated polymer particles displaying ionic conductivity were successfully prepared using triethylene glycol dimethacrylate as divinyl monomer instead of EGDM.  相似文献   

14.
Okamoto Y  Kitagawa F  Otsuka K 《Electrophoresis》2006,27(5-6):1031-1040
Cationic polymer microparticles have received much attention especially in the field of biotechnology, such that their analysis and separation have become important. So far, the separation of cationic polymer particles with different size using CE has not been achieved and the cationic particles migrated as if they are negatively charged, probably due to electrostatic interaction between capillary wall and cationic polymer particles. In this paper, the separation of cationic polymer microparticles by CE was investigated in detail. The separation of cationic particles with different size was achieved in CE by taking into account the interaction between sample particles and the inner surface of capillaries. By employing a poly(vinyl alcohol)-coated capillary, a better size separation of amine-modified latex particles was obtained compared to a Polybrene-coated capillary. It was elucidated that the composition, concentration, and pH of the background solution were also important factors in the separation of colloidal particles to avoid the surface adsorption and the characteristic aggregation of polymer particles. Furthermore, the CE analysis was applied to the characterization of cationic protein-immobilized particles.  相似文献   

15.
Acrylic polymers, including poly(methyl methacrylate), poly(2,2,2-trifluoroethyl methacrylate), poly( N,N'-dimethyaminoethyl methacrylate), and poly(2-hydroxyethyl methacrylate) were grafted from flat nickel and copper surfaces through surface-initiated atom transfer radical polymerization (ATRP). For the nickel system, there was a linear relationship between polymer layer thickness and monomer conversion or molecular weight of "free" polymers. The thickness of the polymer brush films was greater than 80 nm after 6 h of reaction time. The grafting density was estimated to be 0.40 chains/nm2. The "living" chain ends of grafted polymers were still active and initiated the growth of a second block of polymer. Block copolymer brushes with different block sequences were successfully prepared. The experimental surface chemical compositions as measured by X-ray photoelectron spectroscopy agreed very well with their theoretical values. Water contact angle measurements further confirmed the successful grafting of polymers from nickel and copper surfaces. The surface morphologies of all samples were studied by atomic force microscopy. This study provided a novel approach to prepare stable functional polymer coatings on reactive metal surfaces.  相似文献   

16.
Wall coating for capillary electrophoresis on microchips   总被引:2,自引:0,他引:2  
Dolník V 《Electrophoresis》2004,25(21-22):3589-3601
This review article with 116 references describes recent developments in the preparation of wall coatings for capillary electrophoresis (CE) on a microchip. It deals with both dynamic and permanent coatings and concentrates on the most frequently used microchip materials including glass, poly(methyl methacrylate), poly(dimethyl siloxane), polycarbonate, and poly(ethylene terephthalate glycol). Characterization of the channel surface by measuring electroosmotic mobility and water contact angle of the surface is included as well. The utility of the microchips with coated channels is demonstrated by examples of CE separations on these chips.  相似文献   

17.
This study describes a facile and versatile method for preparing polymer-encapsulated silica particles by ‘grafting from’ polymerization initiated by a redox system comprising ceric ion (Ce4+) as an oxidant and an organic reductant immobilized on the surface of silica nanoparticles. The silica nanoparticles were firstly modified by 3-aminopropyltriethoxysilane, then reacted with poly(ethylene glycol) acrylate through the Michael addition reaction, so that hydroxyl-terminated poly(ethylene glycol) (PEG) were covalently attached onto the nanoparticle surface and worked as the reductant. Poly(methyl methacrylate) (PMMA), a common hydrophobic polymer, and poly(N-isopropylacrylamide) (PNIPAAm), a thermosensitive polymer, were successfully grafted onto the surface of silica nanoparticles by ‘grafting from’ polymerization initiated by the redox reaction of Ce4+ with PEG on the silica surface in acid aqueous solutions. The polymer-encapsulated silica nanoparticles (referred to as silica@PMMA and silica@PNIPAAm, respectively) were characterized by infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. On the contrary, graft polymerization did not occur on bare silica nanoparticles. In addition, during polymerization, sediments were observed for PMMA and for PNIPAAm at a polymerization temperature above its low critical solution temperature (LCST). But the silica@PNIPAAm particles obtained at a polymerization temperature below the LCST can suspend stably in water throughout the polymerization process.  相似文献   

18.
(Methacryloyl ethylenedioxycarbonyl) benzyl N,N‐diethyldithiocarbamate (HEMA‐E‐In) was synthesized and used as a monomer iniferter to develop a novel, photopatternable grafting technology. This molecule functions as both a methacrylic monomer and a photoiniferter (photoinitiator–transfer agent–terminator). The structure of HEMA‐E‐In was characterized by 1H NMR, Fourier transform infrared, and ultraviolet–visible spectroscopies. In the presence of the monomer iniferter, methyl methacrylate was polymerized by exposure to 365‐nm ultraviolet radiation, confirming the initiation capability of HEMA‐E‐In. After the copolymerization of HEMA‐E‐In into a methacrylate‐based polymer, attenuated total reflectance Fourier transform infrared spectra revealed that the photoiniferter functionality was present at the surface of this polymeric substrate. Photografting of poly(ethylene glycol) monomethacrylate monomer from the surface caused a significant change in the hydrophobicity of the surface as demonstrated by contact angle measurements. The novel monomer photoiniferter HEMA‐E‐In initiates the polymerization of bulk monomer and provides a reactive functionality that facilitates further initiation and polymer modification by the polymerization of different monomers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1885–1891, 2002  相似文献   

19.
Polymeric microspheres were prepared from a Merrifield resin via nitroxide‐mediated radical polymerization. Polystyrene, poly(acetoxystyrene), and poly[styrene‐b‐(methyl methacrylate‐co‐styrene)], poly(acetoxystyrene‐b‐styrene), and poly(styrene‐co‐2‐hydroxyethyl methacrylate) copolymers were demonstrated to graft onto 2,2,6,6‐tetramethyl‐1‐piperidinyloxy nitroxide bound Merrifield resins. The polymerization control was enhanced both on the surface and in solution by the addition of sacrificial nitroxide. The significant increase in the particle diameter (more than a fivefold volume increase for polystyrene brushes) showed that polymer growth was not only on the surface but also within the particles, and this diameter increase could be adjusted through changes in the molecular weight of the polymers. The microspheres were characterized by elemental analysis, IR spectroscopy, particle size analysis, and optical microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2145–2154, 2005  相似文献   

20.
Novel cylindrical polymer brushes consisting of poly(diphenylacetylene) main chain and poly(poly(ethylene glycol) methyl ether monomethacrylate) (PPEGMA) side chains were synthesized by the diphenylacetylene macromonomer or side chain initiated atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether monomethacrylate (PEGMA) from an bromo isobutyryl-bearing poly(diphenylacetylene) (poly(BrDPA)) method. The diphenylacetylene macromonomer, namely, DPA-PPEGMA, were prepared by the ATRP of PEGMA from bromo isobutyryl-bearing diphenylacetylene. DPA-PPEGMA was polymerized successfully with WCl6-Ph4Sn catalyst to give high molecular weight polymer brushes poly(DPA-PPEGMA). Meanwhile, polymer brushes (PDPA-g-PPEGMA) were obtained by ATRP of PEGMA from poly(BrDPA). The molecular weight of the side chains of PPEGMA could be controlled simply by modulating the ATRP time. The macromonomer and polymer brushes are soluble in nonpolar solvents such as toluene and chloroform. The polymers of poly(BrDPA) and poly(DPA-PPEGMA) absorb in the longer wavelength region, with two peaks at around 370 and 414 nm. The polymers are thermally stable and exhibit double crystallization and melting peaks during the cooling and heating scans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号