首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The first attempt to use enantiopure antimony ligands 1-4 as a chiral auxiliary was successfully accomplished in a palladium-catalyzed asymmetric alkylation of 1,3-diphenylprop-2-ene-1-yl acetate with dimethyl malonate. Under the optimized conditions, the allylation product can be obtained with up to 96% ee in 84% chemical yield by use of enantiopure C2-symmetric 2,2′-bis[di(p-tolyl)stibano]-1,1′-binaphthyl [BINASb(p-Tol)] 4a as a chiral ligand with O-bis(trimethylsilyl)acetamide (BSA) and potassium acetate. The structure of the intermediary BINASb-PdCl2 complex was elucidated by single crystal X-ray analysis, implying that the BINASb should work as a bidentate chiral ligand in the reaction.  相似文献   

2.
Hua Yang  Kung K. Wang 《Tetrahedron》2006,62(34):8133-8141
Several syn and anti atropisomers of 2-(5-benzo[b]fluorenyl)-2′-hydroxy-1,1′-binaphthyl and related compounds were synthesized from 1,1′-binaphthyl-2,2′-diol (BINOL). It was possible to separate the syn and anti atropisomers by silica gel column chromatography. The syn atropisomers are potential hetero-bidentate ligands for complex formation with metals. By starting from enantiomerically pure (R)-(+)-BINOL and (S)-(−)-BINOL, four optically active syn atropisomers and two anti atropisomers with high enantiomeric purity were obtained. The structures of two syn atropisomers and one anti atropisomer were established by X-ray structure analyses.  相似文献   

3.
New aromatic dicarboxylic acids having kink and crank structures, 2,2′-bis(p-carboxyphenoxy) biphenyl and 2,2′-bis(p-carboxyphenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluorobenzonitrile with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by hydrolysis. Biphenyl-2,2′-diyl-and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.58–1.46 dL/g and 0.63–1.30 dL/g, respectively, were obtained by the low-temperature solution polycondensation of the corresponding diacid chlorides with aromatic diamines. These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 210–272 and 260–315°C, respectively. They began to lose weight around 380°C, with 10% weight loss being recorded at about 450°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Reactions of copper(I) halides with racemic 2,2′-bis(diphenylphosphano)-1,1′-binaphthyl (rac-binap) in 1:1 molar ratio afforded mononuclear complexes of the type [CuX(rac-binap)] (X = Cl, Br, I) which, on further treatment with 1 equiv. of pyridine-2-thione (py2SH), pyrimidine-2-thione (pymtH) or 4,6-dimethyl-pyrimidine-2-thione (dmpymtH) gave rise to the formation of mixed-ligand complexes of the formula [CuX(rac-binap)(thione)]. The molecular structures of [CuBr(rac-binap)(py2SH)] · 2CH2Cl2, [CuBr(rac-binap)(py2SH)] · CH2Cl2 and [CuBr(rac-binap)(dmpymtH)] · CH2Cl2 have been established by single-crystal X-ray diffraction. Each of the complexes features a distorted tetrahedral copper(I) center with the phosphane acting in a chelating fashion. The complexes are strongly luminescent in the solid state at ambient temperature. Unusually, the [CuBr(rac-binap)(py2SH)] · 2CH2Cl2 molecules crystallise in a chiral space group with independent S- and R-enantiomers in the asymmetric unit.  相似文献   

5.
Lipase-catalyzed hydrolysis of (E)-2-[α-(acetoxyimino)benzyl]-1,1′-binaphthyl [(±)-1a] and (Z)-2-[α-(acetoxyimino)benzyl]-1,1′-binaphthyl [(±)-1b] yielded optically active (E)-2-[α-(hydroxyimino)benzyl]-1,1′-binaphthyl [(S)-2a] and (Z)-2-[α-(hydroxyimino)benzyl]-1,1′-binaphthyl [(R)-2b], respectively, with high enantiomeric excess. Selectivity for the opposite enantiomer of the axial binaphthyl skeleton was shown by (Z)-isomer 1b against (E)-isomer 1a.  相似文献   

6.
New aromatic polyimides containing a biphenyl-2,2′-diyl or 1,1′-binaphthyl-2,2′-diyl unit were prepared by a conventional two-step method starting from 2,2′-bis(p-aminophenoxy) biphenyl or 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl and aromatic tetracarboxylic dianhydrides. The polyimides having inherent viscosities of 0.69–0.99 and 0.51–0.59 dL/g, respectively, were obtained. Some of these polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. Transparent, flexible, and pale yellow to brown films of these polymers could be cast from the DMAc or NMP polyamic acid solutions. These aromatic polyimides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 200–235 and 286–358°C, respectively. They began to lose weight around 380°C, with 10% weight loss being recorded at about 470°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Chiral N,N-diaryl C2-symmetric diamines and N-aryl,N′-formyl-trans-(1R,2R)-diaminocyclohexane are readily accessed by copper catalyzed N,N-diarylation and N-aryl,N′-formylation of trans-(1R,2R)-diaminocyclohexane with aryl bromides. N,N′-diarylation using (R)-1,1′-binaphthyl-2,2′-diamine and iodobenzene gave the corresponding (R)-N,N-diphenyl-1,1′-binaphthyl-2,2′-diamine derivative in 83% yield.  相似文献   

8.
Chiral conjugated polymers P-1 and P-2 were synthesized by the polymerization of (R)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((R)-M-1) and (S)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((S)-M-1) with 2,5-bis(4-vinylphenyl)-1,3,4-oxadiazole (M-2) under Pd-catalyzed Heck coupling reaction, respectively. Both monomers and polymers were analysed by NMR, MS, FT-IR, UV, DSC-TG, fluorescent spectroscopy, GPC and CD spectra. The chiral conjugated polymers exhibit strong Cotton effect in their circular dichroism (CD) spectra indicating a high rigidity of polymer backbone. CD spectra of polymers P-1 and P-2 are almost identical and have opposite signs for their position. These polymers have strong blue fluorescence.  相似文献   

9.
New aromatic diamines having kink and crank structures, 2,2′-bis(p-aminophenoxy)biphenyl and 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluoronitrobenzene with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by catalytic reduction. Biphenyl-2,2′-diyl- and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.44–1.18 and 0.26–0.88 dL/g, respectively, were obtained either by the direct polycondensation or low-temperature solution polycondensation of the diamines with aromatic dicarboxylic acids (or diacid chlorides). These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 215–255 and 266–303°C, respectively. They began to lose weight at ca. 380°C, with 10% weight loss being recorded at about 470°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Condensation of (S)-2-amino-2′-hydroxy-1,1′-binaphthyl with 1 equiv. of pyrrole-2-carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives (S)-2-(pyrrol-2-ylmethyleneamino)-2′-hydroxy-1,1′-binaphthyl (1H2) in 90% yield. Deprotonation of 1H2 with NaH in THF, followed by reaction with LnCl3 in THF gives, after recrystallization from a toluene or benzene solution, dinuclear complexes (1)3Y2(thf)2 · 3C7H8 (3 · 3C7H8) and (1)3Yb2(thf)2 · 3C6H6 (4 · 3C6H6), respectively, in good yields. Treatment of 1H2 with Ln[N(SiMe3)2]3 in toluene under reflux, followed by recrystallization from a benzene solution gives the dimeric amido complexes {1-LnN(SiMe3)2}2 · 2C6H6 (Ln = Y (5 · 2C6H6), Yb (6 · 2C6H6)) in good yields. All compounds have been characterized by various spectroscopic techniques, elemental analyses and X-ray diffraction analyses. Complexes 5 and 6 are active catalysts for the polymerization of methyl methacrylate (MMA) in toluene, affording syn-rich poly-(MMA)s.  相似文献   

11.
Aromatic tetracarboxylic dianhydride having crank and twisted noncoplanar structure, 2,2′-bis(3,4-dicarboxyphenoxy)-1,1′-binaphthyl dianhydride, was synthesized by the reaction of 4-nitrophthalonitrile with 2,2′-dihydroxy-1,1′-binaphthyl, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). Binaphthyl-2,2′-diyl–containing novel aromatic polyimides having inherent viscosities up to 0.67 dL/g were obtained by the one-step polymerization process starting from the bis(ether anhydride) and various aromatic diamines. All the polyimides showed typical amorphous diffraction patterns. Most of the polyimides were readily soluble in common organic solvents such as N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and pyridine. These aromatic polyimides had glass transition temperatures in the range of 280–350°C, depending on the nature of the diamine moiety. All polymers were stable up to 400°C, with 10% weight loss being recorded above 485°C in air. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1937–1943, 1998  相似文献   

12.
Bis[o-(hydrosilyl)phenyl]cuprates and bis[o-(fluorosilyl)phenyl]cuprates were prepared by reacting [o-(hydrosilyl)phenyl]lithiums and [o-(fluorosilyl)phenyl]lithiums, respectively, with copper salts, such as CuCN and Cu(OPiv)2. The phenylcuprates underwent oxidative coupling to afford 2,2′-bis(hydrosilyl)biphenyls and 2,2′-bis(fluorosilyl)biphenyls.  相似文献   

13.
Lipase-catalyzed amidation of 2-[2-(ethoxycarbonyl)ethyl]-1,1′-binaphthyl [(±)-3] yielded optically active (S)-3 and 2-[2-(2-cyanoethylaminocarbonyl)ethyl]-1,1′-binaphthyl [(R)-6a] with high enantiomeric excess. For these lipase-catalyzed amidations, the optimal alkyl chain length between the binaphthyl ring and the ester group was determined to be an ethylene spacer.  相似文献   

14.
2,2′-Diamino-1,1′-biaryls were found to undergo ring-closure condensation reaction to afford benzo[c]carbazoles in good to excellent yield. Coupled with the synthesis of 2,2′-biaryldiamines from diaryl hydrazides via [3,3]-sigmatropic rearrangement, it constitutes a new efficient synthetic method for benzo[c]carbazoles and related compounds.  相似文献   

15.
The syntheses of the terminally protected, crowned, Cα-tetrasubstituted α-amino acids with only axial chirality, the two diastereomers Boc-(S)-Bip[(R)-Binol-22-C-6]-OMe and Boc-(R)-Bip[(R)-Binol-22-C-6]-OMe, and their respective enantiomers Boc-(R)-Bip[(S)-Binol-22-C-6]-OMe and Boc-(S)-Bip[(S)-Binol-22-C-6]-OMe, all derived from 2′,1′:1,2; 1″,2″:3,4-dibenzcyclohepta-1,3-diene-6-amino-6-carboxylic acid (Bip), were performed by bis-alkylation with cyclization of racemic (R+S)-Boc-[HO]2-Bip-OMe, possessing two phenolic OH groups at the 6,6′-positions of the biphenyl frame of Bip, using (+)-(R)- and (−)-(S)-Binol[(OCH2CH2)2OTs]2 (2,2′-bis[5-tosyloxy-3-oxa-1-pentyloxy]-1,1′-binaphthyl), respectively, as the alkylating agent followed by chromatographic separation. Two series of terminally protected model peptides to the hexamer level, containing the (R)-Bip[(S)-Binol-22-C-6] residue at i and i+3 positions of the sequence, combined with either l-Ala or l-Ala/Aib, were synthesized by solution methods. Their 3D-structural analyses by FTIR absorption and NMR suggest that these peptides preferentially adopt folded secondary structures.  相似文献   

16.
The oxidative electrochemistry of 1,1′-bis(diphenylphosphino)osmocene (dppo) and 1,1′-bis(diphenylarsino)ferrocene (dpaf) was studied in dichloromethane with tetrabutylammonium hexafluorophosphate as the supporting electrolyte. The [MCl2(PP)] (M = Pd or Pt; PP = dppo or 1,1′-bis(diphenylphosphinoindenyl)iron) complexes were prepared, studied electrochemically and the X-ray structures of dppo and [PdCl2(dppo)] were determined.  相似文献   

17.
The influence of [(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]-1-propanesulfonic acid (TAPS) on solutions containing lead(II) was studied by direct current polarography (DCP) and glass electrode potentiometry (GEP). The readings were taken at fixed total TAPS to total lead(II) concentration ratios and various pH values, at 25.0 ± 0.1 °C and ionic strength 0.1 M KNO3.Due to the basic pKa of the ligand, which occurs in the pH range where large amount of lead polynuclear species are formed, and the occurrence of ligand adsorption, that disabled the use of high concentrations of TAPS on DCP experiments, GEP and DCP experimental conditions were put to the limit in order to provide the correct Pb-TAPS-OH model and reliable stability constants.The proposed final model is: PbL, PbL2, PbL2(OH) and PbL2(OH)2 with overall stability constants values, as log β, 3.27 ± 0.06, 6.5 ± 0.1, 12.7 ± 0.1 and 17.27 ± 0.06, respectively.A comparative analysis of the strength of complexation of TAPS and a structural related buffer, 2-hydroxy-3-[tris(hydroxymethyl)methylamino]-1-propanesulfonic acid (TAPSO), with lead is also discussed.  相似文献   

18.
1,1-Bis[4-(4-carboxyphenoxy)phenyl]cyclohexane (III) and 1,1-bis[4-(4-aminophenoxy)phenyl]cyclohexane (V) were prepared in two main steps starting from the aromatic nucleophilic substitution of p-fluorobenzonitrile and p-chloronitrobenzene, respectively, with 1,1-bis(4-hydroxyphenyl)cyclohexane in the presence of potassium carbonate in N,N-dimethylformamide (DMF). Using triphenyl phosphite and pyridine as condensing agents, two series of polyamides with cyclohexylidene cardo groups were directly polycondensated from dicarboxylic acid III with various aromatic diamines or from diamine V with various aromatic dicarboxylic acids in an N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The polyamides exhibited inherent viscosities in the range of 0.45 to 1.78 dL/g. Almost all of the polymers were readily soluble in polar aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc) and could afford transparent, flexible, and tough films by solution casting. The glass transition temperatures (Tg) of these aromatic polyamides were in the range of 180–243°C by DSC, and the 10% weight loss temperatures in nitrogen and air were all above 450°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3575–3583, 1999  相似文献   

19.
The new (R)-6,6′-bis(trifluoromethanesulfonyl)-2,2′-dihydroxy-1,1′-binaphthyl (1) has been synthesized and proved to generate highly active zirconium-based catalysts for asymmetric Mannich-type reactions.  相似文献   

20.
Michael reaction of 3-(2′-nitrovinyl)indole with eight 3-unsubstituted indoles on TLC-grade silica gel furnished unsymmetrical bis(indolyl)nitroethanes in 7-12 min under microwave irradiation and in 8-14 h at rt. In contrast, the p-TsOH-catalysed reaction of the nitrovinylindole with the 3-unsubstituted and two 3-substituted indoles in solution under reflux furnished both unsymmetrical and symmetrical bis(indolyl)nitroethanes, the latter resulting from novel tandem Michael addition-elimination-Michael addition reactions. The synthesis of a 2′,3″-bis(indolyl)nitroethane, the precursor core structure of two bioactive marine metabolites, and the reduction of 2,2-bis(3′-indolyl)nitroethane to the corresponding ethylamine, isolated as its N-acetyl derivative, have been achieved. Significantly, attempted hydrolysis of three nitronates, derived from the corresponding bis(indolyl)nitroethanes, with buffered aqueous TiCl3 has led to the first isolation of oximes (syn/anti-mixture) as the only products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号