首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 873 毫秒
1.
Coupling rates between the radicals methyl, n-, sec-, tert-butyl and benzyl (R.) and the aromatic radical anions of 1,4-dicyanonaphthalene, 9,10-dicyanoanthracene and fluorenone (A-.) have been obtained using a new laser-flash photolysis method. The radicals R. and the radical anions A-. were generated by a photoinduced electron transfer reaction between the aromatic compound A and the alkyl or benzyl triphenylborate anion RB(Ph)3-. For the first time the rate constants of the coupling reaction between methyl and benzyl radicals with aromatic radical anions have been obtained. For all the measured coupling rate constants an average value of k1 = 1.9 x 10(9) M-1 s-1 was found with a relatively small variation in the coupling rates (0.8-2.9 x 10(9) M-1 s-1). The results demonstrate that the coupling rate k1 is insensitive to changes in the steric and electronic properties of the radicals and the structure and standard potentials of the aromatic radical anions.  相似文献   

2.
Reaction intermediates produced upon the photolysis of benzyl chloride have been studied in glassy matrix and in solution. In the steady-state photolysis both benzyl radicals and structural isomers of benzyl chloride were formed in ethanol, while in 3-methylpentane the structural isomers were predominantly formed. The nanosecond laser photolyses of benzyl chloride in ethanol and in cyclohexane also generated benzyl radicals and structural isomers at room temperature. In acetonitrile, in addition to these species, benzyl cations were observed in the early stage after the photolysis.  相似文献   

3.
Alkylarenes, obtained from abundant hydrocarbon feedstock sources, are an attractive starting material for the formation of complex molecular architectures. Conventional activation strategies of the relatively inert sp3-hybridized benzylic C–H bonds usually require relatively harsh conditions and are difficult to apply to the synthesis of fine chemicals. The present review describes recent strategic advances for the activation of benzylic C–H bonds for the catalytic formation of C–C bonds. In particular, two activation methods, i.e., strategies that generate benzylic radicals or benzyl anions, are discussed.  相似文献   

4.
Several novel pyridine-oxadiazole iridium complexes were synthesized and characterized through X-ray crystallography.The designed iridium.complexes revealed surprisingly high catalytic activity in C-N bondformation of amides and benzyl alcohols with the assistance of non-coordinating anions.In an attempt to achieve borrowing hydrogen reactions of amides with benzyl alcohols,N,N'-(phenylmethylene)dibenzamide products we re unexpectedly isolated under non-coordinating anion conditions,whereas N-benzylbenzamide products were achieved in the absence of non-coordinating anions.The mechanism explorations excluded the possibility of"silver effect"(silver-assisted or bimetallic catalysis)and revealed that the reactivity of iridium catalyst was varied by non-coordinating anions.This work provided a convenient and useful methodology that allowed the iridium complex to be a chemoselective catalyst and demonstrated the first example of non-coordinating-anion-tuned selective C-N bond formation.  相似文献   

5.
The thermal unimolecular decay of the benzyl radical has been investigated extensively by several groups. However, the reaction products could not be determined unambiguously. In this work the unimolecular bond fission of the benzyl radical is studied in a molecular beam experiment. The precursor molecules toluene and cycloheptatriene are expanded in a molecular beam and photodissociated with two photons at 248 or 193 nm, yielding in each case hot benzyl radicals. Since the internal energies lie above the dissociation limit, the benzyl radicals decay in a subsequent step. The reaction products are detected in a time-resolved manner with a quadrupole mass spectrometer on the molecular beam axis at low electron energies. The measured time-of-flight spectra provide information on the translational energy distribution of the products. In each case it is found that the hot benzyl radicals C7H7 fragment under hydrogen loss to C7H6.  相似文献   

6.
The one-electron oxidation reaction of tris[di-tert-butyl(methyl)silyl]silyl and -germyl anions with dichlorogermylene-dioxane complex results in the formation of stable tris[di-tert-butyl(methyl)silyl]silyl and -germyl radicals 1 and 2, representing the first isolable radical species of heavier Group 14 elements lacking stabilization by conjugation with pi-bonds. The crystal structures of both silyl and germyl radicals 1 and 2 showed a completely planar geometry around the radical centers. The ESR spectra of 1 and 2 showed strong signals with characteristic satellites due to the coupling with the 29Si and 73Ge nuclei. The small values of the hyperfine coupling constants a(29Si) and a(73Ge) clearly indicate the pi-character of both radicals, corresponding to a planar geometry and sp2 hybridization of the radical centers. Both 1 and 2 easily undergo halogenation reactions with carbon tetrachloride, 1,2-dibromoethane, and benzyl bromide to form the corresponding halosilanes and halogermanes.  相似文献   

7.
A series of novel, cycloaliphatic, cationically photopolymerizable epoxide monomers bearing benzyl ether groups were prepared. These monomers display a considerable enhancement in the rate of their cationic ring‐opening polymerizations in comparison with monomers that do not contain such groups. In this article, a synergistic free‐radical mechanism is proposed that accounts for this effect, and supporting evidence is offered for its verification. During UV irradiation of an onium salt cationic photoinitiator, the aryl radicals that are generated abstract labile benzyl hydrogens present in such monomers to generate the corresponding carbon‐centered radicals. Subsequently, these radicals are oxidized to benzyl carbocations by the onium salt via a nonphotochemical chain process. The observed increase in the rate and extent of the cationic ring‐opening polymerization of the epoxide monomers is due to the aforementioned mechanism, which effectively increases the number of reactive cationic species present during polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3578–3592, 2001  相似文献   

8.
Equilibrium acidities (pK(HA)) of six P-(para-substituted benzyl)triphenylphosphonium (p-GC(6)H(4)CH(2)PPh(3)(+)) cations, P-allyltriphenylphosphonium cation, P-cinnamyltriphenylphosphonium cation, and As-(p-cyanobenzyl)triphenylarsonium cation, together with the oxidation potentials [E(ox)(A(-))] of their conjugate anions (ylides) have been measured in dimethyl sulfoxide (DMSO) solution. The acidifying effects of the alpha-triphenylphosphonium groups on the acidic C-H bonds in toluene and propene were found to be ca 25 pK(HA) units (34 kcal/mol). Introduction of an electron-withdrawing group such as 4-NO(2), 4-CN, or 4-Br into the para position of the benzyl ring in p-GC(6)H(4)CH(2)PPh(3)(+) cations resulted in an additional acidity increase, but introduction of the 4-OEt electron-donating group decreases the acidity. The equilibrium acidities of p-GC(6)H(4)CH(2)PPh(3)(+) cations were nicely linearly correlated with the Hammett sigma(-) constants of the substituents (G) with a slope of 4.78 pK(HA) units (R(2) = 0.992) (Figure 1). Reversible oxidation potentials of the P-(para-substituted benzyl)triphenylphosphonium ylides were obtained by fast scan cyclic voltammetry. The homolytic bond dissociation enthalpies (BDEs) of the acidic C-H bonds in these cations, estimated by combining their equilibrium acidities with the oxidation potentials of their corresponding conjugate anions, showed that the alpha-Ph(3)P(+) groups have negligible stabilizing or destabilizing effects on the adjacent radicals. The equilibrium acidity of As-(p-cyanobenzyl)triphenylarsonium cation is 4 pK(HA) units weaker than that of P-(p-cyanobenzyl)triphenylphosphonium cation, but the BDE of the acidic C-H bond in As-(p-cyanobenzyl)triphenylarsonium cation is ca 2 kcal/mol higher than that in P-(p-cyanobenzyl)triphenylphosphonium cation.  相似文献   

9.
Magnesium aluminum layered double hydroxides (MgAl-LDHs) intercalated with a range of benzyl anions were prepared using the coprecipitation method. The benzyl anions differ in functionality (i.e. carboxylate, sulfonate, and phosphonate) and presence or absence of an amino substituent. Various methods for preparing LDHs (i.e. ion exchange, coprecipitation and rehydration of the calcined LDH methods) have been compared with the MgAl-benzene phosphonate and their effect on fire and thermal properties was studied. After characterization, the MgAl-LDHs were melt-blended with poly(methyl methacrylate) (PMMA) at loadings of 3 and 10% by weight to prepare composites. Characterization of the LDHs and the PMMA composites was performed using FTIR, XRD, TGA, transmission electron microscopy (TEM) and cone calorimetry. FTIR and XRD analyses confirmed the presence of the charge balancing benzyl anions in the galleries of the MgAl-LDHs. Improvements in fire and thermal properties of the PMMA composites were observed. The cone calorimeter revealed that the addition of 10% MgAl-LDHs reduces the peak heat release rate by more than 30%.  相似文献   

10.
Oxidative dissolution of zinc in the system of benzyl chloride-dimethylacetamide was investigated. The reaction stereochemistry as well as intermediates and reaction products formed were studied. The kinetic and thermodynamic parameters of the process were measured. The process was shown to follow the Langmuir-Hinshelwood mechanism with the formation of benzyl radicals and mono-solvated organozinc compound on the zinc surface. The components of mixture are adsorbed at various sites of the zinc surface, while recombination and the isomerization of the benzyl radicals occurs in solution.  相似文献   

11.
In order to clarify the mechanism of initiation by dimethylbenzylanilinium chloride (DMBAC), the polymerization of methyl methacrylate with DMBAC has been investigated at 60–80°C. From the results of kinetic and tracer studies, it was found that this polymerization proceeded via a radical mechanism and benzyl radical was not an initiating species. However, it was also noted that DMBAC easily dissociated into dimethylaniline and benzyl chloride under the present conditions, and the overall activation energy for the methyl methacrylate polymerization was 14.6 kcal/mole. These observations indicate that initiating radicals other than benzyl radical, i.e., phenyl or methyl radicals, may be produced through a redox interaction between DMBAC and dimethylaniline dissociated from DMBAC.  相似文献   

12.
The radicals and anions derived from the 9H tautomer of adenine by adding a hydrogen atom to one of the four double bonds of the adenine framework have been studied. Computations were carried out using a carefully calibrated density functional (B3LYP) method and basis set (DZP++). Optimized geometries, energies, and vibrational frequencies are predicted for eight radicals and anions. The radicals are found to lie in a range of 22 kcal mol(-1), with the radical derived by addition to the C(8) carbon atom being the lowest lying energetically. The anions are predicted to be bound species in the gas phase with an energetic range of 43 kcal mol(-1). Anions produced by addition of a hydride ion to adenine carbon atoms are found to be the most favorable. Six of the anions are predicted to be stable species with respect to electron detachment. The adiabatic electron affinities, vertical electron affinities, and vertical detachment energies are computed for the first time. Electron affinities for these radicals range from 0.0 to 2.0 eV. Radicals produced by addition to a nitrogen atom have near-zero adiabatic electron affinities, while radicals produced by addition at carbon atoms have considerably higher electron affinities.  相似文献   

13.
A modified INDO procedure has been used to calculate the proton hyperfine splittings in benzyl and the isoelectronic anilino, phenoxy and 2-azabenzyl as well as 2- and 3-thenyl radicals. The present procedure differentiates between s-, p- and d-orbitals on an atom in estimating various integrals involving them, satisfies the rotational invariance requirements and employs an orthogonalized basis set of atomic orbitals for obtaining core-Hamiltonian matrix elements. The calculations based on using the exponents which depend only on the type of orbital and the nature of atom fail to provide correct relative order of ortho and para proton splittings in benzyl as well as anilino, phenoxy and 2-azabenzyl radicals. On the other hand, use of the exponents which are modified according to the charge densities in various orbitals leads to a high absolute value for para proton splitting compared to that for ortho proton splitting which in case of all these radicals is in agreement with experiment. A spin density calculation on benzyl, anilino and phenoxy radicals considering the variation of one-center one-electron and one-center two-electron integrals for different protons with their charges is found to yield further improvement in the relative order of ortho and para proton splittings in all these radicals. In 2- and 3-thenyl radicals the role of 3d-orbitals on sulfur has also been examined. To our knowledge, no unrestricted INDO calculations including 3d-orbitals on sulfur have been reported in the literature so far.  相似文献   

14.
Ab initio calculations at the level of CBS-QB3 theory have been performed to investigate the potential energy surface for the reaction of benzyl radical with molecular oxygen. The reaction is shown to proceed with an exothermic barrierless addition of O2 to the benzyl radical to form benzylperoxy radical (2). The benzylperoxy radical was found to have three dissociation channels, giving benzaldehyde (4) and OH radical through the four-centered transition states (channel B), giving benzyl hydroperoxide (5) through the six-centered transition states (channel C), and giving O2-adduct (8) through the four-centered transition states (channel D), in addition to the backward reaction forming benzyl radical and O2 (channel E). The master equation analysis suggested that the rate constant for the backward reaction (E) of C6H5CH2OO-->C6H5CH2+O2 was several orders of magnitude higher that those for the product dissociation channels (B-D) for temperatures 300-1500 K and pressures 0.1-10 atm; therefore, it was also suggested that the dissociation of benzylperoxy radicals proceeded with the partial equilibrium between the benzyl+O2 and benzylperoxy radicals. The rate constants for product channels B-D were also calculated, and it was found that the rate constant for each dissociation reaction pathway was higher in the order of channel D>channel C>channel B for all temperature and pressure ranges. The rate constants for the reaction of benzyl+O2 were computed from the equilibrium constant and from the predicted rate constant for the backward reaction (E). Finally, the product branching ratios forming CH2O molecules and OH radicals formed by the reaction of benzyl+O2 were also calculated using the stationary state approximation for each reaction intermediate.  相似文献   

15.
The kinetics and mechanisms of the reactions of o-benzyne with propargyl and benzyl radicals have been investigated computationally. The possible reaction pathways have been explored by quantum chemical calculations at the M06-2X/6-311+G(3df,2p)//B3LYP/6-311G(d,p) level and the mechanisms have been investigated by the Rice-Ramsperger-Kassel-Marcus theory/master-equation calculations. It was found that the o-benzyne associates with the propargyl and benzyl radicals without pronounced barriers and the activated adducts easily isomerize to five-membered ring species. Indenyl radical and fluorene + H were predicted to be dominantly produced by the reactions of o-benzyne with propargyl and benzyl radicals, respectively, with the rate constants close to the high-pressure limits at temperatures below 2000 K. The related reactions on the two potential energy surfaces, namely, the reaction between fulvenallenyl radical and acetylene and the decomposition reactions of indenyl and α-phenylbenzyl radicals were also investigated. The high reactivity of o-benzyne toward the resonance stabilized radicals suggested a potential role of o-benzyne as a precursor of polycyclic aromatic hydrocarbons in combustion.  相似文献   

16.
A study of the reactivity of semi-stabilised arsonium ylide anions in olefination reactions is presented. The different ylide anions were generated by the addition of nBuLi to various arsonium halide derivatives: [Ph(2)As(R)R'](+)X(-), where R and R' are methyl, allyl, prenyl or benzyl groups. By using diallyldiphenylarsonium bromide (R=R'=allyl) an olefination protocol was optimised allowing the efficient transformation of aliphatic aldehydes into terminal 1,3-dienes with a high selectivity for the E isomer (E/Z ratios ranging from 90:10 to 97:3). The olefination reactions of aldehydes with dissymmetric arsonium halides (R not equal R') are very chemoselective; with arsonium ylide anions the benzyl moiety is more reactive than the allyl moiety which is much more reactive than prenyl and methyl groups. Based on the experimental results, a mechanism is proposed for the reaction.  相似文献   

17.
The nickel-catalyzed cross-coupling of aryl halides with alkyl radicals derived from alkyl halides has recently been extended to couplings with carbon radicals generated by a co-catalyst. In this study, a new co-catalyst, cobalt phthalocyanine (Co(Pc)), is introduced and demonstrated to be effective for coupling substrates not prone to homolysis. This is because Co(Pc) reacts with electrophiles by an SN2 mechanism instead of by the electron-transfer or halogen abstraction mechanisms previously explored. Studies demonstrating the orthogonal reactivity of (bpy)Ni and Co(Pc), applying this selectivity to the coupling of benzyl mesylates with aryl halides, and the adaptation of these conditions to the less reactive benzyl phosphate ester and an enantioconvergent reaction are presented.  相似文献   

18.
We have observed and characterized two new double Rydberg anions N6H19- and N7H22- through their anion photoelectron spectra. The vertical detachment energies of these anions were found to be 0.443 and 0.438 eV, respectively. In addition, for three of the seven double Rydberg anions now known, we measured photodetachment transitions not only to the ground electronic states of their corresponding neutral Rydberg radicals but also to their first electronically excited states. In each spectrum, the energy spacing between the resulting peaks provided the ground-to-first electronically excited-state transition energy for the double Rydberg anion's corresponding neutral Rydberg radical. For the radicals, N4H13, N5H16, and N6H19, the spacings were found to be 0.83, 0.70, and 0.67 eV, respectively. These values are in excellent agreement with ground-to-first excited-state transition energies measured in absorption for the same neutral Rydberg radicals by Fuke and co-workers [Eur. Phys. J. D 9, 309 (1999); J. Phys. Chem. A 106, 5242 (2002).] The duplication of this neutral Rydberg property by photodetachment of double Rydberg anions further confirms that double Rydberg anions are indeed the negative ions of their corresponding neutral Rydberg molecules and cluster-like systems.  相似文献   

19.
C60 fullerene was radiolyzed in toluene solution both in presence of air and in vacuum at four different radiation doses 12, 24, 36, 48 and 96 kGy. Clear evidences of the addition of benzyl radicals to the fullerene cage derive from FT-IR and C13-NMR spectra of the reaction product. In presence of air the interference of oxygen is evident in the FT-IR spectra and from the elemental analysis. A detailed analysis of the kinetics of the multiple addition of benzyl radicals to the fullerene cage was made spectrophotometrically with the determination of the addition rate constants at the each addition step and the average number of benzyl groups added to the fullerene cage as function of the radiation dose.  相似文献   

20.
Specific solvation of nitrated phenoxide, anilide and benzyl anions is shown to decrease in that order, with concomitant increases in substituent salvation assisted resonance effects — the nitrobenzyl anions are suggested to be essentially charge-delocalized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号