首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of the effects upon gas-liquid two-phase flows of pipefittings such as expansions, contractions, bends, and valveshave usually concentrated upon pressuredrop correlations andhave not attempted to determine changes in the distributionsof the gas and liquid phases caused by the fitting. However,it is known that such information is important if, for example,flow separators, which divide the gas and liquid phases in avariety of industrial processes, are to function efficiently.It is therefore important to gain an understanding of the influenceupon phase distributions of the common pipe fittings mentionedabove, which will be found in almost any industrial pipeworksystem. As a first step, the dispersion of solid particles carriedby turbulent gas flows through a pipe expansion has been modellednumerically. The commercial fluid-flow code CFDS-FLOW{smalltilde}hDas been used to model the gas flow, together with aneddy interaction model for determination of the motion of thesolid particles. Mean particle velocities and root-mean-squarevalues of the particle velocity fluctuations, as well as particleconcentrations, are evaluated and compared with recent experimentalresults. The influence of different eddy-length and eddy-lifetimespecifications upon the dispersion of particles of various sizesis investigated. It is found that the different eddy characteristicshave little effect on predicted mean particle velocities, whereasfluctuations in particle velocities and particle concentrationare sensitive to the changes made. By comparing the resultswith experimental data, it is possible to draw conclusions aboutthe relative merits of the different eddy specifications.  相似文献   

2.
An unsteady state transfer of immersed particles within the interval between the arrival of eddies is solved by use of the Laplace transform schemes. The mean particle flux and the mean particle transport mechanisms are automatically considered on the average sublayer growth period by formulating the mean distributions as a stochastic process with the aid of exponentially distributed density function. The proposed relationship for the particle deposition velocity of average time domain obtained by this analysis is expressed as the form of analytical equation, with the inclusion of the effects of Brownian diffusion, turbulent eddy diffusivity, turbophoresis, and thermophoresis. The solution of this equation is in reasonable agreement with the measured deposition velocities for three distinct categories. This mathematical framework offers a simple computation tool of practical use to aerosol engineers and can further extend by including appropriate forces in the analytical formulation through the equilibrium among acceleration terms.  相似文献   

3.
Magneto-hydrodynamics and thermal radiation effects on heat and mass transfer in steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate embedded in a fluid saturated porous media in the presence of the thermophoresis particle deposition effect is studied in this paper. The governing equations are transformed by special transformations. Brownian motion of particles and thermophoretic transport are considered in the flow equations. The magnetic field is considered to be applied. Rosseland approximation is used to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically by the fourth-order Runge–Kutta method with shooting technique. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on the wall thermophoretic deposition velocity, concentration, temperature and velocity profiles.  相似文献   

4.
两相流中柱状固粒对流体湍动特性影响的研究   总被引:7,自引:2,他引:5  
对含柱状固粒的两相流场,建立了包含柱状固粒对流场影响的流体脉动速度方程,在求解脉动速度方程的基础上,经平均得到流体的湍流强度和雷诺应力.将该方法用于槽流湍流场的求解,并与单相流实验结果进行了比较.计算中变化柱状固粒的参数,给出了固粒的体积分数、长径比、松驰时间对流场湍动特性的影响,说明粒子对流场的湍动特性起着抑制作用,其抑制的程度与粒子的体积分数、长径比成正比,与粒子的松弛时间成反比.  相似文献   

5.
The effect of modeling of velocity fluctuations on the prediction of collection efficiency of cyclone separators has been numerically investigated using the Reynolds stress turbulence model (RSTM) and large eddy simulation (LES). The Eulerian–Lagrangian modeling approach of CFD code Fluent 6.3.26 has been employed to simulate the three dimensional, unsteady turbulent gas–solid flows in a Stairmand high efficiency cyclone. The simulated results have been compared with experimental observations available in the literature. The analysis of results shows that the RSTM and the LES have adequately predicted the mean flow field. Results of the present study demonstrate that the LES has good performance on prediction of fluctuating flow field and collection efficiency for each and every particle size. However, the performance of the RSTM is found poor in terms of prediction of velocity fluctuations and collection efficiency, especially for small particles. This relates to the precessing of the vortex core phenomenon, which is resolved more accurately by LES as compared to the RSTM simulation. The results suggest that the prediction of collection efficiency, especially for small particles is greatly influenced by the simulation of velocity fluctuations in cyclones.  相似文献   

6.
Attempt is to extend the sublayer approach model to capture the combined effects of thermophoresis and turbophoresis on the particle transport in the turbulent boundary flow with thermal gradients. Analytical solution relying on a more detailed picture of the periodic sublayer development in the wall region has been obtained. During the average growth period of viscous sublayer, the physical trend of the modeling parameters has been quantitatively revealed in some extent, and the calculated results of the particle deposition rate for the different ranges of the particle relaxation time are in general agreement with available particle transport data.  相似文献   

7.
A CFD code in the framework of OpenFOAM was validated for simulations of particle-laden pipe and channel flows at low to intermediate mass loadings. The code is based on an Eulerian two-fluid approach with Reynolds-averaged conservation equations, including turbulence modeling and four-way coupling. Pipe flow simulations of particles in air against gravity were conducted at Reynolds numbers up to 50000. The particle mass loading was varied and its effect on the mean velocities and turbulent fluctuations of the two phases was studied. Special attention was paid to the influence of mass loading on the centerline velocity and the wall shear velocity of the fluid phase for various flow parameters and particle properties. Empirical correlations were established between these two quantities and the flow Reynolds number, particle Reynolds number, Stokes number and particle to fluid density ratio for a range of particle mass loadings. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In many technical applications turbulent flows with embedded slender vortices exist. Depending on the boundary conditions vortex breakdown can occur. The purpose of this work is to develop and implement a solution scheme for large‐eddy simulations of vortex breakdown in turbulent pipe flows. One of the main problems in this simulation is the formulation of the inflow boundary condition for a fully developed turbulent flow with an embedded vortex. For that purpose a rescaling technique is developed in which a solution at a downstream location is inserted at the inflow boundary after an appropriate rescaling. To determine rescaling laws for pipe flows with an embedded vortex, analytical velocity profiles of swirling flows are first prescribed in a laminar flow. From the spatial development of the vortex a scaling law is deduced. In a next step this procedure is to be transferred to turbulent flows.  相似文献   

9.
The present paper deals with the effect of surface mass transfer on MHD mixed convection flow past a heated vertical flat permeable surface in the presence of thermophoresis, radiative heat flux and heat source/sink. Usual similarity transformations are introduced to obtain similarity solution, using regular perturbation technique. To observe physical insight and interesting aspects of the problem in the presence of thermophoresis, the non-dimensional velocity, temperature and concentration field are numerically studied and displayed graphically for pertinent parameters. It is observed that the thermophoresis has dominant effect on mass transfer mechanism in particle deposition process. The model finds applications in studying particulate deposition on turbine blades, removing small particles from gas streams and determining chemical vapor deposition rate in chemical industries.  相似文献   

10.
用局部平均速度结构函数检测湍流边界层多尺度相干结构   总被引:2,自引:0,他引:2  
测量风洞中平板湍流边界层不同法向位置的流向速度时间序列信号,提出了基于局部多尺度平均意义的湍流多尺度局部平均结构函数的概念,以描述湍流多尺度结构的伸缩变形和相对运动;基于多尺度局部平均结构函数的概念与Harr子波变换的一致性,提出了用湍流多尺度局部平均结构函数的平坦因子检测湍流边界层多尺度相干结构及其间歇性的检测方法,提取近壁区域不同法向位置处多尺度相干结构的条件相位平均波形,以研究多尺度相干结构猝发的动力学过程及其对湍流统计性质的影响.  相似文献   

11.
在水槽中测量了中等雷诺数下平板湍流边界层中的瞬时流向速度的时间序列,验证了Benzi提出的推广的自相似标度律,用子波变换将壁湍流脉动速度分解为多尺度湍涡结构的速度,研究了每一个尺度的湍涡速度结构函数的推广的自相似标度律。主要结论如下:湍流的统计性质是自相似的,这不仅适用于充分发展湍流,而且适用于中等雷诺数和低雷诺数湍流,而且具有相同的标度指数;推广的自相似标度律的适用的尺度范围远远大于惯性子区的范围,可以一直延伸至耗散区的尺度范围;推广的自相似标度律不仅适用于均匀各向同性湍流,也适用于剪切湍流如边界层湍流。  相似文献   

12.
Longitudinal dispersion of suspended particles with settling velocity in a turbulent shear flow over a rough-bed surface is investigated numerically when the settling particles are released from an elevated continuous line-source. A combined scheme of central and four-point upwind differences is used to solve the steady turbulent convection–diffusion equation and the alternating direction implicit (ADI) method is adopted for the unsteady equation. It is shown how the mixing of settling particles is influenced by the ‘log-wake law’ velocity and the corresponding eddy diffusivity when the initial distribution of concentration is regarded as a line-source. The concentration profiles for the steady-state conditions agree well with the existing experimental data and some other numerical results when the settling velocity is zero. The behaviours of iso-concentration lines in the vertical plane for different releasing heights are studied in terms of the relative importance of convection, eddy diffusion and settling velocity.  相似文献   

13.
The statistical temporal scales involved in inertia particle dispersion are analyzed numerically. The numerical method of large eddy simulation, solving a filtered Navier-Stokes equation, is utilized to calculate fully developed turbulent channel flows with Reynolds numbers of 180 and 640, and the particle Lagrangian trajectory method is employed to track inertia particles released into the flow fields. The Lagrangian and Eulerian temporal scales are obtained statistically for fluid tracer particles and three different inertia particles with Stokes numbers of 1, 10 and 100. The Eulerian temporal scales, decreasing with the velocity of advection from the wall to the channel central plane, are smaller than the Lagrangian ones. The Lagrangian temporal scales of inertia particles increase with the particle Stokes number. The Lagrangian temporal scales of the fluid phase ‘seen’ by inertia particles are separate from those of the fluid phase, where inertia particles travel in turbulent vortices, due to the particle inertia and particle trajectory crossing effects. The effects of the Reynolds number on the integral temporal scales are also discussed. The results are worthy of use in examining and developing engineering prediction models of particle dispersion.  相似文献   

14.
The aim of this work is to analyze the efficiency of a snow fence with airfoil snow plates to avoid the snowdrift formation, to improve visibility and to prevent blowing snow disasters on highways and railways. In order to attain this objective, it is necessary to solve particle transport equations along with the turbulent fluid flow equations since there are two phases: solid phase (snow particles) and fluid phase (air). In the first place, the turbulent flow is modelled by solving the Reynolds-averaged Navier-Stokes (RANS) equations for incompressible viscous flows through the finite volume method (FVM) and then, once the flow velocity field has been determined, representative particles are tracked using the Lagrangian approach. Within the particle transport models, we have used a particle transport model termed as Lagrangian particle tracking model, where particulates are tracked through the flow in a Lagrangian way. The full particulate phase is modelled by just a sample of about 15,000 individual particles. The tracking is carried out by forming a set of ordinary differential equations in time for each particle, consisting of equations for position and velocity. These equations are then integrated using a simple integration method to calculate the behaviour of the particles as they traverse the flow domain. Finally, the conclusions of this work are exposed.  相似文献   

15.
Models presented in several recent papers [1–3] dealing with particle transport by, and deposition from, bottom gravity currents produced by the sudden release of dilute, well‐mixed fixed‐volume suspensions have been relatively successful in duplicating the experimentally observed long‐time, distal, areal density of the deposit on a rigid horizontal bottom. These models, however, fail in their ability to capture the experimentally observed proximal pattern of the areal density with its pronounced dip in the region initially occupied by the well‐mixed suspension and its equally pronounced local maximum at roughly the one‐third point of the total reach of the deposit. The central feature of the models employed in [1–3] is that the particles are always assumed to be vertically well‐mixed by fluid turbulence and to settle out through the bottom viscous sublayer with the Stokes settling velocity for a fluid at rest with no re‐entrainment of particles from the floor of the tank. Because this process is assumed from the outset in the models of [1–3], the numerical simulations for a fixed‐volume release will not take into account the actual experimental conditions that prevail at the time of release of a well‐mixed fixed‐volume suspension. That is, owing to the vigorous stirring that produces the well‐mixed suspension, the release volume will initially possess greater turbulent energy than does an unstirred release volume, which may only acquire turbulent energy as a result of its motion after release through various instability mechanisms. The eddy motion in the imposed fluid turbulence reduces the particle settling rates from the values that would be observed in an unstirred release volume possessing zero initial turbulent energy. We here develop a model for particle bearing gravity flows initiated by the sudden release of a fixed‐volume suspension that takes into account the initial turbulent energy of mixing in the release volume by means of a modified settling velocity that, over a time scale characteristic of turbulent energy decay, approaches the full Stokes settling velocity. Thereafter, in the flow regime, we assume that the turbulence persists and, in accord with current understanding concerning the mechanics of dense underflows, that this turbulence is most intense in the wall region at the bottom of the flow and relatively coarse and on the verge of collapse (see [22]) at the top of the flow where the density contrast is compositionally maintained. We capture this behavior by specifying a “shape function” that is based upon experimental observations and provides for vertical structure in the volume fraction of particles present in the flow. The assumption of vertically well‐mixed particle suspensions employed in [1–5] corresponds to a constant shape function equal to unity. Combining these two refinements concerning the settling velocity and vertical structure of the volume fraction of particles into the conservation law for particles and coupling this with the fluid equations for a two‐layer system, we find that our results for areal density of deposits from sudden releases of fixed‐volume suspensions are in excellent qualitative agreement with the experimentally determined areal densities of deposit as reported in [1, 3, 6]. In particular, our model does what none of the other models do in that it captures and explains the proximal depression in the areal density of deposit.  相似文献   

16.
This paper concerns with a steady two-dimensional flow of an electrically conducting incompressible fluid over a vertical stretching sheet. The flow is permeated by a uniform transverse magnetic field. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants a third-order ordinary differential equation corresponding to the momentum equation and two second-order ordinary differential equation corresponding to energy and diffusion equations are derived. The equations along with the boundary conditions are solved numerically. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity to decrease with the increasing distance of the stretching sheet. At a particular point of the sheet the fluid velocity decreases with the decreasing viscosity but the temperature increases in this case. It is found that with the increase of magnetic field intensity the fluid velocity decreases but the temperature increases at a particular point of the heated stretching surface. Impact of thermophoresis particle deposition with chemical reaction in the presence of heat source/sink plays an important role on the concentration boundary layer. The results thus obtained are presented graphically and discussed.  相似文献   

17.
A study has been carried out to obtain the solutions for heat and mass transfer from natural convection flow along a vertical surface with temperature-dependent fluid viscosity embedded in a porous medium due to thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects. This paper concerns with a steady two-dimensional flow of incompressible fluid over a vertical stretching sheet. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equations. The impact of thermophoresis particle deposition with chemical reaction in the presence of thermal-diffusion and diffusion-thermo effects plays an important role on the temperature and concentration boundary layer. The results thus obtained are presented graphically and discussed.  相似文献   

18.
This paper presents a new algorithm for the prediction of indoor suspension particle dispersion based on a v2-f model. In order to handle the near-wall turbulence anisotropy properly, which is significant in the dispersion of fine particles, the particle eddy diffusivity is calculated using different formulae among regions of the turbulent core and in the vicinity of walls. The new algorithm is validated by several cases performed in two ventilated rooms with various air distribution patterns. The simulation results reveal that v2-f nonlinear turbulence model combined with a particle convective equation gives satisfactory agreement with the experimental data. It is generally found that the dynamic equation combined with the v2-f model can properly handle low Reynolds number (LRN) flows which are usually encountered in indoor air flows and fine particle dispersion.  相似文献   

19.
针对在Reynolds数Re=3000~50000、Stokes数S_(tk)=0.1~10、Dean数De=1400~2800的情况下,长径比β=2~12的圆柱状颗粒流经弯管湍流场时的取向与沉积特性进行了研究.圆柱状颗粒的运动采用细长体理论结合Newton第二定律进行描述,取向分布函数由Fokker-Planck方程给出,平均湍流场通过求解Reynolds平均运动方程结合Reynolds应力方程得到,作用在颗粒上的湍流脉动速度由动力学模拟扫掠模型描述.通过求解湍流场以及颗粒的运动方程和取向分布函数方程,得到并分析了沿流向不同截面和出口处颗粒的取向分布,讨论了各因素对颗粒沉积特性的影响.研究结果表明,随着S_(tk)和颗粒长径比β的增加、De和Re的减少,颗粒的主轴更趋向于流动方向.颗粒的沉积率随着De,Re,S_(tk)和颗粒长径比的增大而增加,所得结论对于工程实际应用具有参考价值.  相似文献   

20.
湍流边界层中固体小颗粒湍流运动的Lagrangian模型   总被引:1,自引:0,他引:1  
给出了固体小颗粒在边界层中的Lagrangian运动方程,方程中包括受壁面影响的粘性阻力,Saffman升力及Magus升力等.使用频谱法,得到了颗粒响应流体的Lagrangian能谱的表达式,使用这些结果研究了各种响应特性.本文的结果清楚地表明了固体个颗粒在湍流扩散过程中,其湍流扩散是可能大于流体的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号