首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Interest in using sulfur hexafluoride (SF6 as a gas-fill in multipane windows has raised questions concerning the calculation of heat transfer rates through such windows. The infrared absorption characteristics of this gas make the heat transfer analysis much more complicated. In order to account for the absorption effect, we measured the spectral absorptivity of several infrared-active bands of sulfur hexafluoride at low resolution and a temperature of 298 K. We correlated the spectral absorption data with the Edwards exponential wide-band model and with the Elsasser narrow-band model, and incorporated the wide-band model into a one-dimensional, finite-element heat transfer model. The finite-element heat transfer model considered combined conduction and radiation effects in a double-pane window, and was used to evaluate the overall heat transfer coefficients of double-pane windows filled with SF6; CO2, or air. The numerical results show good agreement with the experimental results  相似文献   

2.
This paper discusses several schemes for handling gaseous overlapping bands in the context of the correlated k distribution model (CKD). Commonly used methods are generally based on certain spectral correlation assumptions; thus they are either less accurate or less efficient and rarely apply to all overlapping bands. We propose a new treatment, which we developed from the traditional absorber amount weighted scheme and improved for application to various bands. This approach is quite efficient for treating the gaseous mixture as if it were a “single gas.” Numerical experiments demonstrate that the new scheme achieves high accuracy with a fast operating speed. To validate the new scheme, we conducted spectrally integrated calculations and sensitivity experiments in the thermal infrared region. Compared to line-by-line integration results, errors in cooling rates were less than 0.2 K/day below 70 Km and rose to 1 K/day from above 70 Km up to 100 Km; flux differences did not exceed 0.8 W/m2 at any altitude. Changes in CO2 and H2O concentrations slightly influenced the accuracy of the results.  相似文献   

3.
A new line intensity distribution function is introduced in order to improve the accuracy of statistical narrow-band (SNB) models in the Doppler line broadening regime and in a wide temperature range. This distribution function generalizes the Malkmus distribution through a parameter enabling to adjust the contribution of small line intensities. This new model is shown to enhance significantly SNB accuracy for CO2 uniform column radiation, especially at low temperatures. For non-uniform columns, Lindquist-Simmons type approximations are derived for this new intensity distribution. Their results are in much closer agreement with line by line results than Curtis-Godson approximation ones when steep temperature gradients are considered.  相似文献   

4.
The plasma-dynamic and spectral characteristics of a cylindrical magnetron-type gas discharge are studied experimentally. The radiation spectrum of the plasma is recorded in real time in the range 350–820 nm. Appropriate conditions for synthesis of TiO2 binary compound are found. They are provided by maintaining the intensities of the spectral lines of reactants and a plasma-forming gas at a desired level. The feasibility of monitoring the TiO2 film synthesis conditions from the spectral characteristics of the discharge plasma and from the variation of the discharge voltage is considered. Ellipsometric and spectral data for nanocrystalline titanium dioxide films indicate that the refractive index of the film depends on its thickness.  相似文献   

5.
The resonant interaction of 87Rb atoms in a magneto-optical trap with femtosecond laser radiation in the spectral range 760–820 nm has been investigated experimentally. It has been demonstrated that femtosecond laser radiation with a spectral width of 10 nm interacts with an atomic ensemble as a set of spectrally narrow modes and as an ionizing laser field simultaneously. The dynamics of trap loading in the presence of ionization by femtosecond radiation has been studied, and the 5D 5/2 level population produced by an additional weak laser field has been measured.  相似文献   

6.
Laser radiation scattered at 90° from gas breakdown plasmas induced by focussed 10 nsec, 1.06 μm wavelength laser pulses was simultaneously spatially and spectrally analysed. The scattered spectra showed non-linear, side band generation, smearing out of spectral structure and Doppler shifts. The side bands are attributed to a non-linear refractive index n2 = 0.6 × 10-12 e.s.u. which causes phase modulation when a weak side band frequency beats with a strong centre frequency. The observations suggest a fast response non-linearity such as would arise from the near resonant non-linear polarizability of excited atoms.  相似文献   

7.
N. Szabo 《Physics Reports》1978,41(6):329-361
The purpose of the present paper is to discuss the theory of the isothermal local resistivity in the sense of linear response. Different methods, as the Langevin equation, the non-equilibrium density operator technique and the linear response theory of conduction, have been related with each other to clear up different ambiguities in the literature.The first two sections are devoted to introduce the hydrodynamic and linear response equations for the electron gas in a medium of scattering mechanisms (phonons, impurities, etc.). The inversion of the conductivity formula into the isothermal local resistivity is performed with help of a generalized Langevin equation in the isothermal limit (limq → 0 limω → 0A). This result agrees with that of the non-equilibrium operator technique. Then the many-variable projection technique of Mori is used to establish the relations between microscopic theory of electrical conduction and the hydrodynamic equations. The relaxation matrix formulation of Fermi-liquid in a metal can describe sound wave propagation in the Fermi-liquid which corresponds to charge density waves. Further, the relation between the isothermal local resistivity and Köhler's variation principle is established for electron-phonon system on a general way, which allows one to make contact with the Boltzmann equation.In the one-electron approximation the isothermal local resistivity is discussed in terms of phase shifts of non-overlapping scatterers. The result is valid for a dense system of resonant scatterers.  相似文献   

8.
The stochastic Eulerian field method is applied to simulate 12 turbulent C1?C3 hydrocarbon jet diffusion flames covering a wide range of Reynolds numbers and fuel sooting propensities. The joint scalar probability density function (PDF) is a function of the mixture fraction, enthalpy defect, scalar dissipation rate and representative soot properties. Soot production is modelled by a semi-empirical acetylene/benzene-based soot model. Spectral gas and soot radiation is modelled using a wide-band correlated-k model. Emission turbulent radiation interactions (TRIs) are taken into account by means of the PDF method, whereas absorption TRIs are modelled using the optically thin fluctuation approximation. Model predictions are found to be in reasonable agreement with experimental data in terms of flame structure, soot quantities and radiative loss. Mean soot volume fractions are predicted within a factor of two of the experiments whereas radiant fractions and peaks of wall radiative fluxes are within 20%. The study also aims to assess approximate radiative models, namely the optically thin approximation (OTA) and grey medium approximation. These approximations affect significantly the radiative loss and should be avoided if accurate predictions of the radiative flux are desired. At atmospheric pressure, the relative errors that they produced on the peaks of temperature and soot volume fraction are within both experimental and model uncertainties. However, these discrepancies are found to increase with pressure, suggesting that spectral models describing properly the self-absorption should be considered at over-atmospheric pressure.  相似文献   

9.
Optical emission from plasma produced in ambient air by focusing a Nd:YAG laser beam on an aluminum surface was spectrally analysed. A periodic behaviour was observed in spectral line intensities associated with series of laser pulses. Based on simultaneous measurements of diffuse surface reflectivity and complementary measurements in other gases (He, O2, N2), this behaviour is ascribed to a competition between thermally-assisted surface oxidation and nitridation, and laser ablation. PACS 52.38.Mf; 52.50.Jm; 81.65; 78.68.+m; 52.70.Kz  相似文献   

10.

Much progress has been made in radiative heat transfer modelling with respect to the treatment of nongrey radiation from both gas-phase species and soot particles, while radiation modelling in turbulent flame simulations is still in its infancy. Aiming at reducing this gap, this paper introduces state-of-the-art models of gas-phase and soot radiation to turbulent flame simulations. The full-spectrum k-distribution method (M.F. Modest, 2003, Journal of Quantitative Spectroscopy & Radiative Transfer, 76, 69–83) is implemented into a three-dimensional unstructured computational fluid dynamics (CFD) code for nongrey radiation modelling. The mixture full-spectrum k-distributions including nongrey absorbing soot particles are constructed from a narrow-band k-distribution database created for individual gas-phase species, and an efficient scheme is employed for their construction in CFD simulations. A detailed reaction mechanism including NO x and soot kinetics is used to predict flame structure, and a detailed soot model using a method of moments is employed to determine soot particle size distributions. A spherical harmonic P1 approximation is invoked to solve the radiative transfer equation. An oxygen-enriched, turbulent, nonpremixed jet flame is simulated, which features large concentrations of gas-phase radiating species and soot particles. Nongrey soot modelling is shown to be of greater importance than nongrey gas modelling in sooty flame simulations, with grey soot models producing large errors. The nongrey treatment of soot strongly influences flame temperatures in the upstream and the flame-tip region and is essential for accurate predictions of NO. The nongrey treatment of gases, however, weakly influences upstream flame temperatures and, therefore, has only a small effect on NO predictions. The effect of nongrey soot radiation on flame temperature is also substantial in downstream regions where the soot concentration is small. Limitations of the P1 approximation are discussed for the jet flame configuration; the P1 approximation yields large errors in the spatial distribution of the computed radiative heat flux for highly anisotropic radiation fields such as those in flames with localized, near-opaque soot regions.  相似文献   

11.

Much progress has been made in radiative heat transfer modeling with respect to treatment of nongray radiation from both gas-phase species and soot particles, while radiation modeling in turbulent flame simulations is still in its infancy. Aiming at reducing this gap, this paper introduces state-of-the-art models of gas-phase and soot radiation to turbulent flame simulations. The full-spectrum k-distribution method (Modest, M.F., 2003, Journal of Quantitative Spectroscopy & Radiative Transfer, 76, 69–83) is implemented into a three-dimensional unstructured CFD code for nongray radiation modeling. The mixture full-spectrum k-distributions including nongray absorbing soot particles are constructed from a narrow-band k-distribution database created for individual gas-phase species, and an efficient scheme is employed for their construction in CFD simulations. A detailed reaction mechanism including NO x and soot kinetics is used to predict flame structure, and a detailed soot model using a method of moments is employed to determine soot particle size distributions. A spherical-harmonic P1 approximation is invoked to solve the radiative transfer equation. An oxygen-enriched, turbulent, nonpremixed jet flame is simulated, which features large concentrations of gas-phase radiating species and soot particles. Nongray soot modeling is shown to be of greater importance than nongray gas modeling in sooty flame simulations, with gray soot models producing large errors. The nongray treatment of soot strongly influences flame temperatures in the upstream and the flame-tip region and is essential for accurate predictions of NO. The nongray treatment of gases, however, weakly influences upstream flame temperatures and, therefore, has only a small effect on NO predictions. The effect of nongray soot radiation on flame temperature is also substantial in downstream regions where the soot concentration is small. Limitations of the P1 approximation are discussed for the jet flame configuration; the P1 approximation yields large errors in the spatial distribution of the computed radiative heat flux for highly anisotropic radiation fields such as those in flames with localized, near-opaque soot regions.  相似文献   

12.
13.
A k-distribution model is presented for gas mixtures in thermodynamic nonequilibrium, containing strongly radiating atomic species N and O together with molecular species of N2, N2+, NO and O2. In the VUV range of the spectrum there is strong absorption of atomic radiation by bands of N2. For this spectral range, a multi-scale model is presented, where RTEs are solved separately for each emitting species and overlap with other species is treated in an approximate way. Methodology for splitting the gas mixture into scales and evaluation of the overlap parameter between different scales is presented. The accuracy of the new model is demonstrated by solving the radiative transfer equation along the stagnation line flow field of the Crew Exploration Vehicle (CEV).  相似文献   

14.
Radiation emission and absorption in arc plasmas are important energy transfer processes. Exact calculations, though possible in principle, are usually impossible in practice because of the need to treat a large number of spectral lines and also the continuum radiation in the whole spectrum range. Recently, we have used an approximate method of partial characteristics to evaluate the radiation intensities, radiation fluxes and the divergence of radiation fluxes for SF6 arc plasma with cylindrical symmetry. In this paper, we have extended our calculations toargon arc plasmas for the plasma pressures of 0.1, 0.5 and 1.0 MPa. We have calculated the coefficients of absorption for Ar plasmas at temperatures from 300 to 35 000 K, and have used these coefficients to calculate the partial characteristics. Both the continuum and the line spectra have been included in calculations. We have taken into account the radiative photo-recombination and bremsstrahlung for the continuous spectrum, and over 500 spectral lines for the discrete spectra.The method of partial characteristics has been applied to three-dimensional calculations of radiative heat transfer — i.e. radiation intensity, radiation flux and its divergence — in simplified temperature profiles. Conclusions have been made concerning validity and utilization of the method of partial characteristics in general gas dynamics problems.  相似文献   

15.
Narrow band k-moment (NBKM) formulations of the transmission function for nonuniform gaseous paths are developed. One of them, called the scaled variance (SV) approximation, is based on the assumption of correlated absorption coefficients. Theoretical derivations are properly detailed and several test cases taken from the literature are provided to assess the approximate modeling results against LBL reference calculations. In most cases representative of combustion configurations, it is shown that the scaled variance approximation is more accurate than the Curtis–Godson one for CO2 but not for H2O.  相似文献   

16.
《等离子体物理论文集》2017,57(6-7):293-310
In this work, using a two‐dimensional particle‐in‐cell Monte Carlo collision computation method, terahertz (THz) radiation generation via the interaction of two‐colour, ultra‐short, high‐power laser pulses with the polyatomic molecular gases sulphur dioxide (SO2) and ammonia (NH3) is examined. The influence of SO2 and NH3 pressures and two‐colour laser pulse parameters, i.e., pulse shape, pulse duration, and beam waist, on the THz radiation generation is studied. It is shown that the THz signal generation from SO2 and NH3 increases with the background gas pressure. It is seen that the THz emission intensity for both gases at higher laser pulse durations is higher. Moreover, for these polyatomic gases, the plasma current density increases with increase in the laser pulse beam waist. A more powerful THz radiation intensity with a larger time to peak of the plasma current density is observed for SO2 compared to NH3. In addition, many THz signals with small intensities are observed for both polyatomic gases. It is seen that for both SO2 and NH3 the generated THz spectral intensity is higher at higher gas pressures.  相似文献   

17.
Absorption of laser radiation at 193 nm by CO2 and O2 was studied at a series of different temperatures up to 1273 K and pressures up to 1 bar. The spectrum for CO2 was found to be broadband, so that absorption could be fitted to a Beer-Lambert law. On the other hand, the corresponding O2 spectrum is strongly structured and parameterisation requires a more complex relation, depending on both temperature and the product (pressure 2 absorption path length). In this context, the influence of spectral structure on the resulting spectrally integrated absorption coefficients is discussed. Using the fitting parameters obtained, effective transmissions at 193 nm can be calculated for a wide range of experimental conditions. As an illustration of the practical application of these data, the calculation of effective transmission for a typical industrial flue gas is described.  相似文献   

18.
We report a prototype CO2 gas sensor based on a simple blackbody infrared source and a spectrally narrow quantum cascade detector (QCD). The detector absorption spectrum is centered at 2260 cm−1 (4.4 μm) and has a full width at half maximum of 200 cm−1 (25 meV). It covers strong absorption bands of two spectrally overlapping CO2 isotopomers, namely the P-branch of 12CO2 and the R-branch of 13CO2. Acquisition of the spectral information and data treatment were performed in a Fourier transform infrared (FTIR) spectrometer. By flushing its sample compartment either with nitrogen, dry fresh air, ambient air, or human breath, we were able to determine CO2 concentrations corresponding to the different gas mixtures. A detection limit of 500 ppb was obtained in these experiments.  相似文献   

19.
This work is a continuation of the authors efforts to develop high-order numerical methods for solving elliptic problems with complex boundaries using a fictitious domain approach. In a previous paper, a new method was proposed, based on the use of smooth forcing functions with identical shapes, mutually disjoint supports inside the fictitious domain and whose amplitudes play the role of Lagrange multipliers in relation to a discrete set of boundary constraints. For one-dimensional elliptic problems, this method shows spectral accuracy but its implementation in two dimensions seems to be limited to a fourth-order algebraic convergence rate. In this paper, a spectrally accurate formulation is presented for multi-dimensional applications. Instead of being specified locally, the forcing function is defined as a convolution of a mollifier (smooth bump function) and a Lagrange multiplier function (the amplitude of the bump). The multiplier function is then approximated by Fourier series. Using a Fourier Galerkin approximation, the spectral accuracy is demonstrated on a two-dimensional Laplacian problem and on a Stokes flow around a periodic array of cylinders. In the latter, the numerical solution achieves the same high-order accuracy as a Stokes eigenfunction expansion and is much more accurate than the solution obtained with a classical third order finite element approximation using the same number of degrees of freedom.  相似文献   

20.
An infrared (IR) single-element detector based on a lithium tantalate (LiTaO3) single-crystal wafer has been successfully fabricated. The preparation and design of the device are discussed and analyzed in detail. The processing of a thin LiTaO3 wafer, the characterization of an IR filter window, and the assembly of the wafer and filter are explained. A LiTaO3 sensor element, a CMOS amplifier, a narrow-band filter (which can be selected to operate within the appropriate spectral region), and the read-out circuits are set into a TO-18 vessel. Each TO-18-type detector offers a single channel (a single detection wavelength). Two TO-18 detectors with different filters, one acting as a detection channel and the other as a reference, a broadband light source, a circuit board and a flake of wire gauze are assembled and integrated into a gilded gas cell for the purpose of detecting ethene gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号