首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfur-containing analogues of vitamin E (thiachromanols), either linked or not to a catechol moiety, were synthesized and their hydrogen-atom donating ability evaluated. The determination of the O--H bond dissociation enthalpy (BDE) of the alpha-tocopherol analogue 4 by the electron paramagnetic resonance (EPR) equilibration technique provided a value of 78.9 kcal mol(-1), that is, approximately 1.8 kcal mol(-1) higher than that of alpha-tocopherol. The kinetic rate constants for the reaction with peroxyl radicals (kinh), measured by inhibited autoxidation studies, showed that thiachromanols react 2.5 times slower than the corresponding tocopherols, in agreement with the higher BDE value. This behavior was explained, on the basis of crystallographic analyses and DFT calculations, in terms of a change in the molecular geometry caused by insertion of a sulfur atom into the framework of vitamin E. This behavior implies a greater deviation of the condensed ring from coplanarity with the aromatic ring, thus giving rise to a decrease in the conjugative stabilization of the phenoxyl radical and consequently to an increase in the O--H bond strength. Although less reactive than tocopherols, thiachromanols may, however, act as bimodal antioxidants as a result of the hydroperoxide decomposing ability of the sulfur atom.  相似文献   

2.
The gas-phase heat of formation (DeltaH(f,298)) of the 1,3,5-tridehydrobenzene triradical has been determined by using a negative ion thermochemical cycle. The first three measurements carried out were of the gas-phase acidity of 3,5-dichlorobenzoic acid, the enthalpy for decarboxylation of 3,5-dichlorobenzoate, and the enthalpy for chloride loss from 3,5,-dichlorophenide and constitute the measurement of the heat of formation for 5-chloro-m-benzyne. The last two measurements, the electron affinity of 5-chloro-m-benzyne, and the threshold for chloride loss from 5-chloro-m-benzyne, when combined with DeltaH(f,298) of 5-chloro-m-benzyne, give the heat of formation of the triradical. The 5-chloro-m-benzyne heat of formation is 116.2 +/- 3.7 kcal/mol. The heat of formation of the 1,3,5-tridehydrobenzene triradical measured in this work is 179.1 +/- 4.6 kcal/mol. This heat of formation was used to derive the bond dissociation energy (BDE) at the 5-position of m-benzyne, a third BDE in benzene. The BDE, at 109.2 +/- 5.6 kcal/mol, is ca. 4 kcal/mol lower than the first BDE in benzene (112.9 kcal/mol) and significantly higher than the BDE of phenyl radical at the meta position. The agreement between the first and third BDEs implies that the triradical is best described as a phenyl radical that interacts little with a m-benzyne moiety. The experimentally measured BDE is in good agreement with multireference configuration interaction calculations, which predict a (2)A(1) ground state for the Jahn-Teller distorted triradical. The trends in the first, second, and third BDEs of benzene are similar to those found for cyclopropane, suggesting a cyclopropenyl-like electronic structure within the six-membered ring of the 1,3,5-benzene triradical.  相似文献   

3.
all-rac-alpha-Selenotocopherol (6c) has been synthesized in 11 steps in 6.6% total yield. Key steps include chloromethylation to approach the persubstituted aromatic 9b and cyclization of alcohol precursor 10 by radical homolytic substitution at selenium to form the selenotocopherol heterocycle. Determination of the OH bond dissociation enthalpy (BDE) of 6c by electron paramagnetic resonance (EPR) equilibration techniques gave a value of 78.1 +/- 0.3 kcal mol(-1), approximately 1 kcal mol(-1) higher than that of alpha-tocopherol. Kinetic studies performed by measuring oxygen uptake of the induced oxidation of styrene in the presence of an antioxidant showed that selenotocopherol (6c) was a slightly poorer inhibitor than alpha-tocopherol, in agreement with the BDE values. In contrast to simpler selenotocopherol analogues, 6c was not regenerable in the presence of a stoichiometric coreductant in a two-phase lipid peroxidation model.  相似文献   

4.
Radical anions of o-, m-, and p-benzoquinone were produced in a Fourier transform mass spectrometer by low energy electron attachment or collision-induced dissociation and were differentiated. Classical derivatization experiments also were carried out to authenticate the ortho and meta anions. Gas-phase techniques were used to measure the proton affinities of all three radical anions and the electron affinities of o- and m-benzoquinone. By combining these results in thermodynamic cycles, we derived heats of hydrogenation of o-, m-, and p-benzoquinone (Delta(hyd)H degrees (1o, 1m, and 1p) = 42.8 +/- 4.1, 74.8 +/- 4.1, and 38.5 +/- 3.0 kcal mol(-)(1), respectively) and their heats of formation (Delta(f)H degrees (1o, 1m, and 1p) = -23.1 +/- 4.1, 6.8 +/- 4.1, and -27.7 +/- 3.0 kcal mol(-)(1), respectively). Good accord with the literature value for the para derivative was obtained. Combustion calorimetry and heats of sublimation also were measured for benzil and 3,5-di-tert-butyl-o-benzoquinone. The former heat of formation agreed with previous determinations, while the latter result (Delta(f)H degrees (g) = -73.09 +/- 0.87 kcal mol(-)(1)) was transformed to Delta(f)H degrees (1o) = -18.9 +/- 2.2 kcal mol(-)(1) by removing the effect of the tert-butyl groups via isodesmic reactions. This led to a final value of Delta(f)H degrees (1o) = -21.0 +/- 3.1 kcal mol(-)(1). Additivity was found to work well for m-benzoquinone, but BDE1 and BDE2 for 1,2- and 1,4-dihydroxybenzene differed by a remarkably small 14.1 +/- 4.2 and 23.5 +/- 3.7 kcal mol(-)(1), respectively, indicating that o- and p-benzoquinone should be excellent radical traps.  相似文献   

5.
The acidities of the two different sites in naphthalene (1alpha and 1beta) and the electron affinities of the alpha- and beta-naphthyl radicals were measured using a Fourier transform mass spectrometer. Both carbon-hydrogen bond dissociation energies for naphthalene also were obtained, in this case via the application of a thermodynamic cycle. The final results are DeltaH(o)acid (1alpha) = 394.2+/-1.2 kcal mol(-1), DeltaH(o)acid (1beta) = 395.5+/-1.3 kcal mol(-1), EA(alpha) = 31.6+/-0.5 kcal mol(-1), EA(beta) = 31.6+/-0.5 kcal mol(-1), BDE(1alpha) = 112.2+/-1.3 kcal mol(-1) and BDE(1alpha) = 111.9+/-1.4 kcal mol(-1), and they are compared to benzene and phenyl radical as well as ab initio and density functional theory (B3LYP) calculations.  相似文献   

6.
The hydrogen-oxygen bond dissociation energies of 3,5-di-tert-butylcatechol, 2,5-di-tert-pentylhydroquinone, propyl gallate, and octyl gallate, which represent model compounds of three important classes of naturally occurring antioxidants, have been measured by an EPR equilibration technique, and the factors determining their values have been clarified. The excellent antioxidant activity of the these polyphenols is largely due to the stabilization of the aroxyl radical due to the formation of an intramolecular hydrogen bond.  相似文献   

7.
The gas-phase C-H bond dissociation enthalpy (BDE) in 1,3-cyclopentadiene has been determined by time-resolved photoacoustic calorimetry (TR-PAC) as 358 +/- 7 kJ mol(-1). Theoretical results from ab initio complete basis-set approaches, including the composite CBS-Q and CBS-QB3 procedures, and basis-set extrapolated coupled-cluster calculations (CCSD(T)) are reported. The CCSD(T) prediction for the C-H BDE of 1,3-cyclopentadiene (353.3 kJ mol(-1)) is in good agreement with the TR-PAC result. On the basis of the experimental and the theoretical values obtained, we recommend 355 +/- 8 kJ mol(-1) for the C-H BDE of 1,3-cyclopentadiene and 271 +/- 8 kJ mol(-1) for the enthalpy of formation of cyclopentadienyl radical.  相似文献   

8.
The results of a thermodynamic and kinetic investigation on the homolytic reactivity of 3,3'-di-tert-butyl-5,5'-dimethyl(1,1'-biphenyl)-2,2'-diol (1) are reported. EPR studies of the equilibration between 1, 2,4,6-trimethylphenol, and the corresponding radicals obtained by abstraction of a hydroxylic hydrogen allowed us to determine the OH bond dissociation energy (BDE) of investigated bisphenol as 83.10 kcal/mol. This value is considerably larger than that reported for the structurally related 2,6-di-tert-butyl-4-methylphenol (BHT), i.e., 81.02 kcal/mol. Absolute rate constants for the reaction of 1 with alkyl, alkoxyl, and peroxyl radicals, at or nearly to room temperature, were also determined by competition kinetics in the first two cases and by autoxidation studies under controlled conditions in the last one. The experimental data indicate that this bisphenol is a moderately efficient antioxidant and polymerization inhibitor.  相似文献   

9.
The rates of H/D exchange have been measured between (a) the activated olefins methyl methacrylate-d(5) and styrene-d(8), and (b) the Cr hydrides (eta(5)-C(5)Ph(5))Cr(CO)(3)H (2a), (eta(5)-C(5)Me(5))Cr(CO)(3)H (2b), and (eta(5)-C(5)H(5))Cr(CO)(3)H (2c). With a large excess of the deuterated olefin the first exchange goes to completion before subsequent exchanges begin, at a rate first order in olefin and in hydride. (Hydrogenation is insignificant except with styrene and CpCr(CO)(3)H; in most cases, the radicals arising from the first H. transfer are too hindered to abstract another H. .) Statistical corrections give the rate constants k(reinit) for H. transfer to the olefin from the hydride. With MMA, k(reinit) decreases substantially as the steric bulk of the hydride increases; with styrene, the steric bulk of the hydride has little effect. At longer times, the reaction of MMA or styrene with 2a gives the corresponding metalloradical 1a as termination depletes the concentration of the methyl isobutyryl radical 3 or the alpha-methylbenzyl radical 4; computer simulation of [1a] as f(t) gives an estimate of k(tr), the rate constant for H. transfer from 3 or 4 back to Cr. These rate constants imply a DeltaG (50 degrees C) of +11 kcal/mol for H. transfer from 2a to MMA, and a DeltaG (50 degrees C) of +10 kcal/mol for H. transfer from 2a to styrene. The CH(3)CN pK(a) of 2a, 11.7, implies a BDE for its Cr-H bond of 59.6 kcal/mol, and DFT calculations give 58.2 kcal/mol for the Cr-H bond in 2c. In combination the kinetic DeltaG values, the experimental BDE for 2a, and the calculated DeltaS values for H. transfer imply a C-H BDE of 45.6 kcal/mol for the methyl isobutyryl radical 3 (close to the DFT-calculated 49.5 kcal/mol), and a C-H BDE of 47.9 kcal/mol for the alpha-methylbenzyl radical 4 (close to the DFT-calculated 49.9 kcal/mol). A solvent cage model suggests 46.1 kcal/mol as the C-H BDE for the chain-carrying radical in MMA polymerization.  相似文献   

10.
Bond dissociation enthalpies (BDE) of hydroxylamines containing alkyl, aryl, vinyl, and carbonyl substituents at the nitrogen atom have been determined by using the EPR radical equilibration technique in order to study the effect of the substituents on the O-H bond strength of these compounds. It has been found that substitution of an alkyl group directly bonded to the nitrogen atom with vinyl or aryl groups has a small effect, while substitution with acyl groups induces a large increase of the O-H BDE value. Thus, dialkyl hydroxylamines have O-H bond strengths of only ca. 70 kcal/mol, while acylhydroxylamines and N-hydroxyphthalimide (NHPI), containing two acyl substituents at nitrogen, are characterized by BDE values of ca. 80 and 88 kcal/mol, respectively. Since the phthalimide N-oxyl radical (PINO) has been recently proposed as an efficient oxidation catalyst of hydrocarbons or other substrates, the large BDE value found for the parent hydroxylamine (NHPI) justifies this proposal. Kinetic studies, carried out in order to better understand the mechanism of the NHPI-catalyzed aerobic oxidation of cumene, are consistent with a simple kinetic model where the rate-determining step is the hydrogen atom abstraction from the hydroxylamine by cumylperoxyl radicals.  相似文献   

11.
The gas-phase O-H bond dissociation enthalpy, BDE, in phenol provides an essential benchmark for calibrating the O-H BDEs of other phenols, data which aids our understanding of the reactivities of phenols, such as their relevant antioxidant activities. In a recent review, the O-H BDE for phenol was presented as 90 +/- 3 kcal mol(-1) (Acc. Chem. Res. 2003, 36, 255-263). Due to the large margin of error, such a parameter cannot be used for dynamic interpretations nor can it be used as an anchor point in the development of more advanced computational models. We have reevaluated the existing experimental gas-phase data (thermolyses and ion chemistry). The large errors and variations in thermodynamic parameters associated with the gas-phase ion chemistry methods produce inconsistent results, but the thermolytic data has afforded a value of 87.0 +/- 0.5 kcal mol(-1). Next, the effect of solvent has been carefully scrutinized in four liquid-phase methods for measuring the O-H BDE in phenol: photoacoustic calorimetry, one-electron potential measurements, an electrochemical cycle, and radical equilibrium electron paramagnetic resonance (REqEPR). The enthalpic effect due to solvation, by, e.g., water, could be rigorously accounted for by means of an empirical model and the difference in hydrogen bond interactions of the solvent with phenol and the phenoxyl radical. For the REqEPR method, a second correction is required since the calibration standard, the O-H BDE in 2,4,6-tri-tert-butylphenol, had to be revised. From the gas-phase thermolysis data and three liquid-phase techniques (excluding the electrochemical cycle method), the present analysis yields a gas-phase BDE of 86.7 +/- 0.7 kcal mol(-1). The O-H BDE was also estimated by state-of-the-art computational approaches (G3, CBS-APNO, and CBS-QB3) providing a range from 86.4 to 87.7 kcal mol(-1). We therefore recommend that in the future, and until further refinement is possible, the gas-phase O-H BDE in phenol should be presented as 86.7 +/- 0.7 kcal mol(-1).  相似文献   

12.
A kinetic and thermodynamic investigation of phenols para-substituted with thiyl (SR), sulfinyl (SOR), and sulfonyl (SO(2)R) groups and ortho-substituted with thiyl groups is reported. The effect of the sulfur substituents on the O-H bond dissociation enthalpy values, BDE(O-H), was measured by means of the EPR radical equilibration technique and the reactivity toward peroxyl radicals, k(inh), of these phenolic antioxidants was determined by inhibited autoxidation studies. An inverse correlation between these two parameters was found. A p-SMe substituent decreased the BDE(O-H) value to a lesser extent than a p-OMe group (-3.6 vs -4.4 kcal/mol), whereas the effect of the same groups in an ortho position showed an opposite trend (-0.85 vs -0.2 kcal/mol). The latter result is explained in terms of the different strength of the intramolecular hydrogen bond between the OH proton and the sulfur or oxygen substituents in ortho derivatives. ESI-MS analysis of the products formed by reacting the sulfides with peroxyl radicals from the azoinitiator AIBN revealed the formation of a complex mixture of products, which may play an important role in determining the overall antioxidant activity of the parent compounds.  相似文献   

13.
The O–H bond dissociation enthalpy (BDE) of 3,5-dimethylphenol has been determined, by using the EPR radical equilibration technique, as 362.5 ± 1.5 kJ/mol. This value is 7 kJ/mol smaller than that of phenol, this indicating that alkyl substitution of the meta hydrogens of phenol induces a weakening of the O–H bond, in contrast with what was reported in a recent calorimetric study.  相似文献   

14.
The gas-phase acidity of 3,3-dimethylcyclopropene (1) has been measured by bracketing and equilibrium techniques. Consistent with simple hybridization arguments, our value (deltaH degrees (acid) = 382.7 +/- 1.3 kcal mol(-)(1)) is indistinguishable from that for methylacetylene (i.e., deltadeltaH degrees (acid)(1 - CH(3)Ctbd1;CH) = 1.6 +/- 2.5 kcal mol(-)(1)). The electron affinity of 3,3-dimethylcyclopropenyl radical (1r) was also determined (EA = 37.6 +/- 3.5 kcal mol(-)(1)), and these quantities were combined in a thermodynamic cycle to afford the homolytic C-H bond dissociation energy. To our surprise, the latter quantity (107 +/- 4 kcal mol(-)(1)) is the same as that for methane, which cannot be explained in terms of the s-character in the C-H bonds. An orbital explanation (delocalization) is proposed to account for the extra stability of 1r. All of the results are supplemented with G3 and B3LYP computations, and both approaches are in good accord with the experimental values. We also note that for simple hydrocarbons which give localized carbanions upon deprotonation there is an apparent linear correlation between any two of the following three quantities: deltaH degrees (acid), BDE, and EA. This observation could be of considerable value in many diverse areas of chemistry.  相似文献   

15.
A kinetic and thermodynamic investigation on the antioxidant activity of 2,2'-methylenebis(6-tert-butyl-4-methylphenol) (2), 2,2'-ethylidenebis(4,6-di-tert-butylphenol) (3), and 4,4'-methylenebis(2,6-di-tert-butylphenol) (4) are reported. EPR studies of the equilibration between 3 or 4 and a reference phenol, and the corresponding phenoxyl radicals, allowed us to determine the O-H bond dissociation enthalpy (BDE) of the O-H bond as 81.2 and 81.1 kcal/mol in 3 and 4, respectively. Despite this similarity, the absolute rate constants for the reaction with peroxyl radicals, determined by autoxidation studies under controlled conditions, indicate that the o-bisphenols 2 and 3 behave as excellent antioxidants while the p-bisphenol 4 is less effective by a factor of 64 and 22, respectively. FT-IR spectroscopy and product studies suggest that the very good antioxidant activity of the o-bisphenols largely arises from both the reduced steric crowding about the hydroxyl group and the stabilization of the aroxyl radical due to the formation of an intramolecular hydrogen bond between the residual OH and the oxygen radical center.  相似文献   

16.
Decarboxylation of 1-bicyclo[1.1.1]pentanecarboxylate anion does not afford 1-bicyclo[1.1.1]pentyl anion as previously assumed. Instead, a ring-opening isomerization which ultimately leads to 1,4-pentadien-2-yl anion takes place. A 1-bicyclo[1.1.1]pentyl anion was prepared nevertheless via the fluoride-induced desilylation of 1-tert-butyl-3-(trimethylsilyl)bicyclo[1.1.1]pentane. The electron affinity of 3-tert-butyl-1-bicyclo[1.1.1]pentyl radical (14.8 plus minus 3.2 kcal/mol) was measured by bracketing, and the acidity of 1-tert-butylbicyclo[1.1.1]pentane (408.5 +/- 0.9) was determined by the DePuy kinetic method. These values are well-reproduced by G2 and G3 calculations and can be combined in a thermodynamic cycle to provide a bridgehead C-H bond dissociation energy (BDE) of 109.7 +/- 3.3 kcal/mol for 1-tert-butylbicyclo[1.1.1]pentane. This bond energy is the strongest tertiary C-H bond to be measured, is much larger than the corresponding bond in isobutane (96.5 +/- 0.4 kcal/mol), and is more typical of an alkene or aromatic compound. The large BDE can be explained in terms of hybridization.  相似文献   

17.
This paper provides evidence from kinetic experiments and electronic structure calculations of a significantly reduced S-H bond strength in the Mo(micro-SH)Mo function in the homogeneous catalyst model, CpMo(micro-S)(2)(micro-SH)(2)MoCp (1, Cp = eta(5)-cyclopentadienyl). The reactivity of 1 was explored by determination of a rate expression for hydrogen atom abstraction by benzyl radical from 1 (log(k(abs)/M(-)(1) s(-)(1)) = (9.07 +/- 0.38) - (3.62 +/- 0.58)/theta) for comparison with expressions for CH(3)(CH(2))(7)SH, log(k(abs)/M(-)(1) s(-)(1)) = (7.88 +/- 0.35) - (4.64 +/- 0.54)/theta, and for 2-mercaptonaphthalene, log(k(abs)/M(-)(1) s(-)(1)) = (8.21 +/- 0.17) - (4.24 +/- 0.26)/theta (theta = 2.303RT kcal/mol, 2sigma error). The rate constant for hydrogen atom abstraction at 298 K by benzyl radical from 1 is 2 orders of magnitude greater than that from 1-octanethiol, resulting from the predicted (DFT) S-H bond strength of 1 of 73 kcal/mol. The radical CpMo(micro-S)(3)(micro-SH)MoCp, 2, is revealed, from the properties of slow self-reaction, and exclusive cross-combination with reactive benzyl radical, to be a persistent free radical.  相似文献   

18.
Synthetic studies are reported that show that the reaction of either H2SnR2 (R = Ph, n-Bu) or HMo(CO)3(Cp) (1-H, Cp = eta(5)-C5H5) with Mo(N[t-Bu]Ar)3 (2, Ar = 3,5-C6H3Me2) produce HMo(N[t-Bu]Ar)3 (2-H). The benzonitrile adduct (PhCN)Mo(N[t-Bu]Ar)3 (2-NCPh) reacts rapidly with H2SnR2 or 1-H to produce the ketimide complex (Ph(H)C=N)Mo(N[t-Bu]Ar)3 (2-NC(H)Ph). The X-ray crystal structures of both 2-H and 2-NC(H)Ph are reported. The enthalpy of reaction of 1-H and 2 in toluene solution has been measured by solution calorimetry (DeltaH = -13.1 +/- 0.7 kcal mol(-1)) and used to estimate the Mo-H bond dissociation enthalpy (BDE) in 2-H as 62 kcal mol(-1). The enthalpy of reaction of 1-H and 2-NCPh in toluene solution was determined calorimetrically as DeltaH = -35.1 +/- 2.1 kcal mol(-1). This value combined with the enthalpy of hydrogenation of [Mo(CO)3(Cp)]2 (1(2)) gives an estimated value of 90 kcal mol(-1) for the BDE of the ketimide C-H of 2-NC(H)Ph. These data led to the prediction that formation of 2-NC(H)Ph via nitrile insertion into 2-H would be exothermic by approximately 36 kcal mol(-1), and this reaction was observed experimentally. Stopped flow kinetic studies of the rapid reaction of 1-H with 2-NCPh yielded DeltaH(double dagger) = 11.9 +/- 0.4 kcal mol(-1), DeltaS(double dagger) = -2.7 +/- 1.2 cal K(-1) mol(-1). Corresponding studies with DMo(CO)3(Cp) (1-D) showed a normal kinetic isotope effect with kH/kD approximately 1.6, DeltaH(double dagger) = 13.1 +/- 0.4 kcal mol(-1) and DeltaS(double dagger) = 1.1 +/- 1.6 cal K(-1) mol(-1). Spectroscopic studies of the much slower reaction of 1-H and 2 yielding 2-H and 1/2 1(2) showed generation of variable amounts of a complex proposed to be (Ar[t-Bu]N)3Mo-Mo(CO)3(Cp) (1-2). Complex 1-2 can also be formed in small equilibrium amounts by direct reaction of excess 2 and 1(2). The presence of 1-2 complicates the kinetic picture; however, in the presence of excess 2, the second-order rate constant for H atom transfer from 1-H has been measured: 0.09 +/- 0.01 M(-1) s(-1) at 1.3 degrees C and 0.26 +/- 0.04 M(-1) s(-1) at 17 degrees C. Study of the rate of reaction of 1-D yielded kH/kD = 1.00 +/- 0.05 consistent with an early transition state in which formation of the adduct (Ar[t-Bu]N)3Mo...HMo(CO)3(Cp) is rate limiting.  相似文献   

19.
The gas-phase acidities of the two aromatic sites in benzocyclobutene were measured in a Fourier transform mass spectrometer using a kinetic technique (i.e., the DePuy method). Fusion of a cyclobutane ring onto benzene is found to have a slight acidifying effect at the alpha-position (3.2 +/- 1.7 kcal mol(-)(1)) and little, if any, influence on the beta-site (0.8 +/- 1.9 kcal mol(-)(1)). Energetic data (DeltaH degrees (acid) = 386.2 +/- 3.0 kcal mol(-)(1), EA = 0.84 +/- 0.11 eV, and C-H BDE = 92 +/- 4 kcal mol(-)(1)) for the benzylic position were obtained via the bracketing technique and application of a thermodynamic cycle. Differences in the reactivities of the three conjugate bases also were explored. Ab initio and density functional theory calculations were carried out to provide geometries, energies, and insights into the carbanions' electronic structures.  相似文献   

20.
Kinetic and thermodynamic properties of the aminoxyl (NH2O*) radical   总被引:1,自引:0,他引:1  
The product of one-electron oxidation of (or H-atom abstraction from) hydroxylamine is the H2NO* radical. H2NO* is a weak acid and deprotonates to form HNO-*; the pKa(H2NO*) value is 12.6+/-0.3. Irrespective of the protonation state, the second-order recombination of the aminoxyl radical yields N2 as the sole nitrogen-containing product. The following rate constants were determined: kr(2H2NO*)=1.4x10(8) M-1 s-1, kr(H2NO*+HNO-*)=2.5x10(9) M-1 s-1, and kr(2HNO-*)=4.5x10(8) M-1 s-1. The HNO-* radical reacts with O2 in an electron-transfer reaction to yield nitroxyl (HNO) and superoxide (O2-*), with a rate constant of ke(HNO-*+O2-->HNO+O2-*)=2.2x10(8) M-1 s-1. Both O2 and O2-* seem to react with deprotonated hydroxylamine (H2NO-) to set up an autoxidative chain reaction. However, closer analysis indicates that these reactions might not occur directly but are probably mediated by transition-metal ions, even in the presence of chelators, such as ethylenediamine tetraacetic acid (EDTA) or diethylenetriamine pentaacetic acid (DTPA). The following standard aqueous reduction potentials were derived: E degrees (H2NO*,2H+/H3NOH+)=1.25+/-0.01 V; E degrees (H2NO*,H+/H2NOH)=0.90+/-0.01 V; and E degrees (H2NO*/H2NO-)=0.09+/-0.01 V. In addition, we estimate the following: E degrees (H2NOH+*/H2NOH)=1.3+/-0.1 V, E degrees (HNO, H+/H2NO*)=0.52+/-0.05 V, and E degrees (HNO/HNO-*)=-0.22+/-0.05 V. From the data, we also estimate the gaseous O-H and N-H bond dissociation enthalpy (BDE) values in H2NOH, with BDE(H2NO-H)=75-77 kcal/mol and BDE(H-NHOH)=81-82 kcal/mol. These values are in good agreement with quantum chemical computations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号