首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The sensitized anti-Stokes luminescence excited by radiation with wavelengths from 610 to 750 nm and flux densities of 1014–1015 quanta/(cm2·s) is detected for microcrystals of Zn 0.6 Cd 0.4 S solid solutions with adsorbed organic malachite green and methylene blue dye molecules. The position of its excitation spectra coincides with that of the absorption spectra of adsorbed dye molecules, which suggests the cooperative mechanism of its occurrence. The possibility of amplification of the anti-Stokes luminescence by means of adsorption of silver atoms and few-atomic silver clusters, in addition to the dye molecules, on the Zn 0.6 Cd 0.4 S surface is investigated. It is assumed that in the latter case, the anti-Stokes luminescence is excited as a result of two-quantum optical transitions with electron or electron excitation energy transfer from the dye molecules adsorbed on the Zn 0.6 Cd 0.4 S surface to silver atoms and few-atomic silver clusters creating deep local states with photoionization energies of 1.8–2.0 eV in the gap. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 21–26, March, 2008.  相似文献   

2.
We have analyzed regular features of sensitization processes of crystals AgCl, AgCl0.95I0.05, and Zn0.6Cd0.4S to processes of a low-threshold (10?3–10?4 W/cm2) two-quantum excitation of anti-Stokes luminescence by adsorbed molecules and by J and H aggregates of dyes of different classes. The excitation centers of this luminescence are complex and consist of dye molecules and few-atom silver clusters adsorbed nearby. Luminescence-excitation processes involve stages of photoexcitation of adsorbed dye molecules; resonance transfer of electronic excitation energy to adsorbed atoms and few-atom silver clusters, levels of which lie near the middle of the band gap; and their subsequent photoionization.  相似文献   

3.
An anti-Stokes luminescence band with λmax = 515 nm of microcrystals of solid AgCl0.95I0.05 solutions excited by a radiation flux of density 1013–1015 quanta/cm2·sec in the range 600–800 nm at 77 K was detected. It is shown that the intensity of this luminescence and the frequency of its excitation depend on the prior UV-irradiation of samples. Analysis of the stimulated-photoluminescence spectra and the anti-Stokes luminescence excitation spectra of the indicated microcrystals has shown that to the centers of anti-Stokes luminescence excitation correspond local levels in the forbidden band of the crystals. These states are apparently due to the atomic and molecular disperse silver particles that can be inherent in character or formed as a result of a low-temperature photochemical process. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 6, pp. 738–742, November–December, 2005.  相似文献   

4.
The low-temperature photostimulated activation of sensitized anti-Stokes luminescence in heterogeneous systems based on AgCl(I) microcrystals with adsorbed organic dye molecules and their aggregates is investigated. It is shown that the observed considerable (by more than an order of magnitude) enhancement of the intensity of this luminescence is caused by the formation of silver atoms and few-atom clusters on the surface of AgCl(I) microcrystals, which increase the efficiency of a two-quantum excitation of sensitized anti-Stokes luminescence by optical radiation in the range 630–730 nm with the flux density 1013–1015 quantum cm?2s?1. Analysis of all the experimental results indicates that the excitation mechanism of anti-Stokes luminescence is based on successive electron transfer or electron-excitation energy transfer from a dye molecule to an atomic-molecular dispersive silver center.  相似文献   

5.
Exciton luminescence and intracenter luminescence (IL) of Mn2+ ions in Cd0.6Mn0.4Te/Cd0.5Mg0.5Te structures with quantum wells (QWs) 7, 13, and 26 monolayers thick were studied. It was established that in QWs the intensity of exciton luminescence with respect to that of IL is a few orders of magnitude higher than that in bulk crystals. The spectral position of manganese IL profile changes noticeably in going from a bulk crystal to a QW of the same composition. The nonexponential parts of the IL decay curves are determined by excitation migration and the cooperative upconversion process, whose contribution is high under strong excitation and efficient migration. At 77 K, the IL decay constant τ within the exponential region increases with decreasing QW thickness. The decay constant τ in a QW, unlike in a bulk Cd0.5Mn0.5Te crystal, decreases substantially under cooling from 77 to 4 K.  相似文献   

6.
Emission spectra of three Cd0.6Mn0.4Te/Cd0.5Mg0.5Te superlattices with Cd0.6Mn0.4Te quantum-well (QW) widths of 7, 13, and 26 monolayers, respectively, and the same thickness (46 monolayers) of the Cd0.5Mg0.5Te barriers have been studied. The QW width affects the shape and spectral position of the Mn2+ intracenter luminescence (IL) band as a result of the crystal field being dependent on the position of the manganese ion with respect to the interface. Measured in identical experimental conditions, the exciton luminescence as compared to the IL is substantially higher in intensity in a QW than in a bulk CdMnTe crystal. Some samples of superlattices and bulk crystals exhibit, in addition to the conventional IL band near 2.0 eV, a weaker band at about 1.45 eV. This band apparently derives from intracenter transitions in the Mn2+ ions in the regions where the crystal lattice has the rock-salt rather than the conventional zinc blende structure.  相似文献   

7.
The laws governing polarization of luminescence in the nanostructure Si/CaF2 upon polarization of the spins of the fluorine nuclei by means of optical excitation of charge carriers are considered theoretically. The possibility of studying experimentally the properties of nuclear spins in analyzing luminescence is shown. The polarization of luminescence is most informative in the range of excitation rates of charge carriers from 3⋅107 to 3⋅ 108 sec−1 with the CaF2 layer of thickness from 0.6 to 0.8 nm and optical excitation polarization degree of 0.1. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 4, pp. 524–529, July–August, 2005.  相似文献   

8.
We have studied the effect of lead dopant on the optical absorption, photoluminescence, and x-ray luminescence spectra, and the scintillation characteristics of CdI2 at room temperature. The crystals for the study were grown by the Stockbarger-Bridgman method. Activation of CdI2 from the melt by the compound PbI2 leads to the appearance in the absorption spectra in the near-edge region of an activator band at 395–405 nm, which is interpreted as an A band connected with electronic transitions from the 1S0 state to the 3P1 levels in the Pb2+ ion. For x-ray excitation, CdI2:Pb2+ crystals with optimal dopant concentration (∼1.0 mol%) are characterized by a light yield with maximum in the 570–580 nm region that is an order of magnitude higher than for CdI2 crystals in the 490–500 nm band. For α excitation, the radioluminescence kinetics for cadmium iodide is characterized by a very short (∼0.3 nsec) rise time and fast decay of luminescence, with τ1 ≈ 4 nsec and τ2 = 10–76 nsec. Depending on the conditions under which the crystals were obtained, the fast component fraction is 95%–99%. The crystal is characterized by a similar scintillation pulse in the case of excitation by x-ray pulses. The radioluminescence pulse shape for CdI2:Pb in the decay stage is predominantly exponential, with luminescence decay time constants τ1 ≈ 10 nsec and τ2 = 200–250 nsec. This system is characterized by low afterglow, at the level for the Bi4G3O12 scintillator. We have demonstrated the feasibility of using CdI2:Pb as a scintillator for detecting α particles. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 6, pp. 825–830, November–December, 2008.  相似文献   

9.
The short-wave transmission spectrum of Na0.4Lu0.6F2.2 with the visible/ultraviolet transmission edge of 8 eV was studied. Absorption spectra of the 4f—5d transitions of the Ce3+ ion in the region of 4–8 eV were studied in Ce3+-doped Na0.4Lu0.6F2.2 single crystals. Luminescence spectra in the ultraviolet and visible spectral regions, luminescence decay kinetics and reflection and luminescence excitation spectra in the visible/ultraviolet and ultraviolet regions (4–20 eV) were investigated at helium and room temperatures.  相似文献   

10.
The luminescence and thermally stimulated recombination processes in lithium borate crystals Li6Gd(BO3)3 and Li6Gd(BO3)3:Ce have been studied. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence), temperature dependences of the intensity of steady-state X-ray luminescence (XL), and thermally stimulated luminescence (TSL) spectra of these compounds have been investigated in the temperature range of 90–500 K. The intrinsic-luminescence 312-nm band, which is due to the 6 P J 8 S 7/2 transitions in Gd3+ matrix ions, dominates in the X-ray luminescence spectra of these crystals; in addition, there is a wide complex band at 400–420 nm, which is due to the d → f transitions in Ce3+ impurity ions. It is found that the steady-state XL intensity in these bands increases several times upon heating from 100 to 400 K. The possible mechanisms of the observed temperature dependence of the steady-state XL intensity and their correlation with the features of electronic-excitation energy transfer in these crystals are discussed. The main complex TSL peak at 110–160 K and a number of minor peaks, whose composition and structure depend on the crystal type, have been found in all crystals studied. The nature of the shallow traps that are responsible for TSL at temperatures below room temperature and their relation with defects in the lithium cation sublattice are discussed.  相似文献   

11.
The thermally stimulated recombination processes and luminescence in crystals of the lithium borate family Li6(Y,Gd,Eu)(BO3)3 have been investigated. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence spectra), the temperature dependences of the X-ray luminescence intensity, and the glow curves for the Li6Gd(BO3)3, Li6Eu(BO3)3, Li6Y0.5Gd0.5(BO3)3: Eu, and Li6Gd(BO3)3: Eu compounds have been measured in the temperature range 90–500 K. In the X-ray luminescence spectra, the band at 312 nm corresponding to the 6 P J 8 S 7/2 transitions in the Gd3+ ion and the group of lines at 580–700 nm due to the 5 D 07 F J transitions (J = 0–4) in the Eu3+ ion are dominant. For undoped crystals, the X-ray luminescence intensity of these bands increases by a factor of 15 with a change in the temperature from 100 to 400 K. The possible mechanisms providing the observed temperature dependence of the intensity and their relation to the specific features of energy transfer of electronic excitations in these crystals have been discussed. It has been revealed that the glow curves for all the crystals under investigation exhibit the main complex peak with the maximum at a temperature of 110–160 K and a number of weaker peaks with the composition and structure dependent on the crystal type. The nature of shallow trapping centers responsible for the thermally stimulated luminescence in the range below room temperature and their relation to defects in the lithium cation sublattice have been analyzed.  相似文献   

12.
We present the results of studying the luminescence properties of transparent ceramics Y3Al5O12:Yb obtained by the vacuum sintering and nanocrystalline technology. In the course of research, we measured the luminescence and luminescence excitation spectra, as well as the temperature and kinetic behavior of luminescence. Our results are analyzed in comparison with the characteristics of corresponding single crystals. We revealed that processes of generation and relaxation of electronic excitations that occur in ceramics, in particular, in the charge transfer state, are similar to processes occurring in crystals. The behavior of two charge-transfer luminescence bands at 340 and 490 nm is studied. In the range 300–600 nm, we revealed a broad emission band of radiation of other type, which is also observed in spectra of undoped ceramics. This broad band is attributed to F+ centers. Emission and excitation spectra of charge transfer luminescence at a maximum of the temperature dependence of 100 K are measured for the first time. We found that, upon excitation in the charge transfer band, luminescence in ceramics is more intense than in single crystals with similar concentrations of Yb and has a higher quenching temperature.  相似文献   

13.
The photoluminescence and photoexcitation spectra as well as the luminescence decay kinetics of Er3+ ions in the visible ultraviolet and vacuum ultraviolet (VUV) regions have been studied by the method of low-temperature, time-resolved VUV-spectroscopy on excitation by synchrotron radiation. In the VUV spectral region of the luminescence of SrF2:1% Er3+, the 146.5-nm band with a time of decay of less than 0.6 nsec was revealed together with the well-known emission band at 164.3 nm (decay constant in the microsecond range). Its possible nature is discussed. The specific features of the formation of photoexcitation spectra of the f-f and f-d transitions in the Er3+ ion are considered. Competition between the processes of excitation of f-f and d-f luminescence has been revealed. It manifests itself in the inverse relationship of their photoexcitation spectra in a range of energies of incident photons that are close to the position of the 4fn−15d configuration levels. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 4, pp. 519–523, July–August, 2005.  相似文献   

14.
This paper reports on a study of the luminescence emitted by Li6Gd(BO3)3: Ce3+ crystals under selective photoexcitation to lower excited states of the host ion Gd3+ and impurity ion Ce3+ within the 100–500-K temperature interval, where the mechanisms of migration and relaxation of electronic excitation energy have been shown to undergo noticeable changes. The monotonic 10–15-fold increase in intensity of the luminescence band at 3.97 eV has been explained within a model describing two competing processes, namely, migration of electronic excitation energy over chains of Gd3+ ions and vibrational energy relaxation between the 6 I j and 6 P j levels. It has been shown that radiative transitions in Ce3+ ions from the lower excited state 5d 1 to 2 F 5/2 and 2 F 7/2 levels of the ground state produce two photoluminescence bands, at 2.08 and 2.38 eV (Ce1 center) and 2.88 and 3.13 eV (Ce2 center). Possible models of the Ce1 and Ce2 luminescence centers have been discussed.  相似文献   

15.
Nonlinear optical materials of the type Zn x Cd1-x Te single crystals, where x = 0.0, 0.2, 0.4, 0.6, 0.7, 0.8, and 1.0, have been grown by the Bridgman method, using a vertical furnace. We have investigated the electro-optic (E-O) coefficient and refractive index of Zn x Cd1-x Te single crystals at optical communication wavelength (1550 nm). In the case of CdTe crystal, the E-O coefficient was 15.5 × 10-12 m/V, which is the biggest among the E-O coefficients of Zn x Cd1-x Te crystals. The E-O modulation signal was very big in low frequency range (DC-100kHz), but the signal amplitude became smaller as we increased frequency above 100 kHz. We also found the acousto-optic modulation at CdTe single crystals.  相似文献   

16.
Han Xu  Jun Zong  Xing-jiang Liu 《Ionics》2018,24(7):1939-1946
The P2-type Na0.67Mn0.6Fe0.4O2 (NaMnFe), Na0.67Mn0.6Fe0.3Zn0.1O2 (NaMnFeZn), and Na0.67Mn0.6Fe0.2Zn0.1Ni0.1O2 (NaMnFeZnNi) are prepared using an acetate decomposition reaction and developed as promising cathode materials for high-capacity sodium-ion batteries. The XRD patterns show that Zn2+ and Ni2+ ions are successfully incorporated into the lattice of the Na-Mn-Fe-O system, and the P2-type structure remains unchanged after substitution. The charging/discharging tests exhibit that the Na0.67Mn0.6Fe0.4O2, Na0.67Mn0.6Fe0.3Zn0.1O2, and Na0.67Mn0.6Fe0.2Zn0.1Ni0.1O2 electrodes have the capacities of 200.4, 182.0, and 202.2 mAhg?1, respectively. The Na0.67Mn0.6Fe0.4O2 electrode has a higher initial capacity but faster capacity decay. When partially substituting Zn and Ni for Fe, the Na0.67Mn0.6Fe0.3Zn0.1O2 and Na0.67Mn0.6Fe0.2Zn0.1Ni0.1O2 electrodes exhibit lower reversible capacity but improved cycling stability (88.3 and 93.4% capacity retention over 100 cycles). The greatly improved electrochemical performance of the Na0.67Mn0.6Fe0.2Zn0.1Ni0.1O2 electrode apparently belongs to the contribution of the Zn2+ and Ni2+ substitution, which facilitates to alleviate the Jahn-Teller distortion of Mn and suppresses the polarization.  相似文献   

17.
We have analyzed the possibilities of using the phenomenon of photostimulated luminescence flash for optical diagnosing of energy levels of structural and impurity defects of semiconductor crystals and nanostructures. New data on the spectra of deep localized states associated with adsorbed few-atom clusters Zn n on the surface of ZnS; clusters Cd n , Cu n , and Ag n on the surface of CdS; and clusters Ag n on the surface of AgBr(I) have been presented, as well as results of investigation of photostimulated assembling processes of few-atom clusters on the surface of crystals using this phenomenon. We are the first to show the potential of the luminescence flash technique for studying the mutual arrangement of the levels of dye molecules and the bands of the crystal on the surface of which they are adsorbed, as well as of the spectra of localized states in colloidal CdS semiconductor quantum dots.  相似文献   

18.
The ranges of the existence of solid solutions in binary systems Ln2O2S-Yb2O2S(Ln = Y, La, Gd) were found and main features of variations of Stokes IR luminescence intensity of Ln2O2S·Yb in the range of 0.96–1.1 μm were determined depending on the composition during IR excitation. Based on the established features, a new Y2O2S:Yb monospectral IR phosphor was developed, which, upon excitation by a 0.940-μm laser, is characterized by an increased Stokes IR luminescence intensity in the range of 0.96–1.1 μm in comparison with that of known commercial phosphor.  相似文献   

19.
Undoped and Er3+-doped glass–ceramics of composition (100−x)SiO2–xSnO2, with x = 5 or 10 and with 0.4 or 0.8 mol% of Er3+ ions, were synthesised by thermal treatment of precursor sol–gel glasses. Structural studies were developed by X-Ray Diffraction. Wide band gap SnO2 semiconductor quantum-dots embedded in the insulator SiO2 glass are obtained. The mean radius of the SnO2 nanocrystals, ranging from 2 to 3.2 nm, is comparable to the exciton Bohr radius. The luminescence properties have been analysed as a function of sample composition and thermal treatment. The results show that Er3+ ions are partially partitioned into the nanocrystalline phase. An efficient UV excitation of the Er3+ ions by energy transfer from the SnO2 nanocrystal host is observed. The Er3+ ions located in the SnO2 nanocrystals are selectively excited by this energy transfer mechanism. On the other hand, emission from the Er3+ ions remaining in the silica glassy phase is obtained by direct excitation of these ions.  相似文献   

20.
The effect of temperature on the spectral luminescence characteristics of PbWO4:Tb3+ crystals with synchrotron and laser excitation is studied. If PbWO4:Tb3+ is excited by synchrotron radiation with λ = 88 nm at 300 K, a faint recombination luminescence of the impurity terbium is observed against the matrix luminescence. When the temperature is reduced to 8 K, the luminescence intensity of PbWO4:Tb3+ increases by roughly an order of magnitude and the characteristic luminescence of the unactivated crystal is observed. Excitation of PbWO4:Tb3+ by a nitrogen laser at 300 K leads to the appearance of emission from Tb3+ ions. At 90 K, a faint matrix luminescence is observed in addition to the activator emission. The formation of the luminescence excitation spectra for wavelengths of 60–320 nm is analyzed and the nature of the emission bands is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号