首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A calorimetric study of blends of poly(ethylene terephthalate-co-p-oxybenzoate), PET/PHB, with poly(butylene terephthalate), PBT has been carried out in the form of as-spun and drawn fibres. DSC melting and crystallization results show that PBT is compatible with LCP and the crystallization of PBT decreases by the addition of LCP in the matrix. The crystallization behaviour of blend fibres is investigated as a function of temperature of crystallization. A detailed analysis of the crystallization course has been made utilizing the Avrami expression. The isothermal calorimetric measurements provide evidence of decrease of rate of crystallization of PBT on addition of the liquid crystalline component up to about 50% by weight. The values of the Avrami exponents change in the temperature range from 200° to 215°C. Dimensionality changes in crystallization could be due to LCP mesophase-transition.  相似文献   

2.
The melt-crystallization and isothermal melt-crystallization kinetics of poly(ethylene terephthalate)/poly(trimethylene terephthalate) blends (PET/PTT) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. Although PET and PTT in the binary blends are miscible at amorphous state, they will crystallize individually when cooled from the melt. In the DSC measurements, PET component with higher supercooling degree will crystallize first, and then the crystallite of PET will be the nucleating agent for PTT, which induce the crystallization of PTT at higher temperature. On the other hand, in both blends of PET80/PTT20 and PET60/PTT40, the PET component will crystallize at higher temperature with faster crystallization rate due to the dilute effect of PTT. So the commingled minor addition of one component to another helps to improve the crystallization of the blends. For blends of PET20/PTT80 and PET40/PTT60, isothermal crystallization kinetics evaluated in terms of the Avrami equation suggest different crystallization mechanisms occurred. The more PET content in blends, the fast crystallization rate is. The Avrami exponent, n = 3, suggests a three-dimensional growth of the crystals in both blends, which is further demonstrated by the spherulites formed in all blends. The crystalline blends show multiple-melting peaks during heating process.  相似文献   

3.
A significant enhancement in isothermal crystallization kinetics of biodegradable polylactide (PLA) in its immiscible blends can be accomplished through blending it with a comb-like copolymer. PLA was blended with poly(ethylene glycol) methyl ether acrylate (PEGA) and poly[poly(ethylene glycol) methyl ether acrylate] (PPEGA, a comb-like copolymer), respectively. The results measured from phase contrast optical microscopy (PCOM) and differential scanning calorimetry (DSC) indicate that PLA and PEGA components are miscible, whereas PLA and PPEGA components are immiscible. The study of crystallization kinetics for PLA/PEGA and PLA/PPEGA blends by means of polarized optical microscopy (POM) and DSC indicates that both PEGA and PPEGA significantly increase the PLA spherulitic growth rates, G, although PLA/PPEGA blends are immiscible and the glass transition temperatures of PLA only have slight decreases. PPEGA component enhances nucleation for PLA crystallization as compared with PEGA component owing to the heterogeneous nucleation effect of PPEGA at the low composition of 20 wt%, while PLA crystallization-induced phase separation for PLA/PEGA blend might cause further nucleation at the high composition of 50 wt%. DSC measurement further demonstrates that isothermal crystallization kinetics can be relatively more enhanced for PLA/PPEGA blends than for PLA/PEGA blends. The “abnormal” enhancement in G for PLA in its immiscible blends can be explained by local interfacial interactions through the densely grafted PEGA side chains in the comb-like PPEGA, even though the whole blend system (PLA/PPEGA blends) represents an immiscible one.  相似文献   

4.
The crystallization behavior of poly(e-caprolactone)/poly(ethylene glycol) (PCL/PEG) blend was investigated by differential scanning calorimetry (DSC) and polarized microscopy (POM). Individual phase transition peaks in the DSC curves for both PEG and PCL in all the polymer blends with different PCL contents were observed. The crystallization and melting peak temperatures of PEG were at 41 and 65°C, respectively; while the crystallization and melting temperatures of PCL located at 28 and 56°C, respectively. In-situ POM results demonstrated that spherulites crystalline morphology was formed for both PCL and PEG homopolymers. In PEG/PCL blend, however, both the phase separation morphology and spherulitic morphology can be observed. In blends with 30 or 50 wt % PCL, the PCL component formed dispersed phase and crystallized at lower temperature. However, in blends with 70% PCL, the phase inversion behavior occurred. The continuous PCL phase crystallized at 35°C, while the PEG dispersed phase crystallized at a lower temperature. Fractional crystallization behavior of PEG and PCL was controlled by temperature. The spherulites growth rate of PEG was greatly influenced by temperature, instead of the content of PCL component in the PCL/PEG blends.  相似文献   

5.
Block copolymers of two crystallizable compounds, poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), were developed with PET as the major component and the amount of PBT varying from 1.0 to 20.0 wt %. These block copolymers were prepared by end-group coupling of preformed oligomers. All polymers prepared were of equivalent molecular weight as determined by the intrinsic viscosity method. Thermal properties were determined by differential thermal analysis (DTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). With increasing PBT content, the block copolymers showed a general decrease in the values of glass transition temperature, melting temperature, initial decomposition temperature, and maximum decomposition temperature. The heat of fusion and heat of crystallization first increased and then decreased slightly. Rates of crystallization were determined by measuring density as a function of time of isothermal crystallization carried out at 95°C. It was found that small amounts of PBT increased the crystallization rate considerably over that of PET. Random copolymers did not show this phenomenon and behaved more like pure PET. The crystallization behavior of block copolymers was analyzed by the Avrami equation and Avrami exponents were determined. Results were explained on the basis that the faster-crystallizing PBT blocks crystallized first and provided built-in nucleation sites for the subsequent crystallization of PET, thus resulting in a relatively fast-crystallizing copolyester.  相似文献   

6.
通过熔融共混法将CaSO4纳米晶须和含磺酸离子的液晶离聚物(LCI)与聚对苯二甲酸丁二醇酯-聚乙烯(PBT-PE),制成PBT-PE-LCI-CaSO4纳米晶须杂化材料。通过DSC、红外图像系统分析和拉伸试验对共混体系的热性能、形态结构和力学性能进行了研究。结果表明:在共混体系中加入LCI提高了体系中PE的结晶温度和结晶度,并且LCI包裹着CaSO4纳米晶须,分散相PE均匀地分散在PBT基体中;当基体与CaSO4纳米晶须的质量比为100∶3时,杂化材料的力学性能最好。  相似文献   

7.
The effects of the composition and resulting morphology on the crystallization and rheology of blends containing poly(butylene terephthalate) (PBT) and an ethylene‐co‐ethyl acrylate (EEA) copolymer, two immiscible polymers, were studied over the entire range of volume fractions. Differential scanning calorimetry (DSC) thermograms recorded during cooling showed important differences, mainly in terms of the PBT crystallization temperatures, depending on the blend composition. In addition to the classical crystallization peaks of PBT and EEA, a third crystallization peak appeared for blends containing less than 60% PBT. This peak was attributed to a delayed crystallization of PBT. This phenomenon was examined in terms of homogeneous crystallization. Linear viscoelastic measurements allowed the delayed crystallization behavior in these polymer blends to be displayed. Indeed, the variation of the storage modulus with the temperature showed increasing steps during cooling. These sudden increases appeared at temperatures very close to those at which the crystallization peaks were observed in the DSC experiments. This behavior was verified for different blend compositions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 714–721, 2004  相似文献   

8.
The miscibility of polycarbonate PC and poly(butylene terephthalate) PBT is controversially discussed in the literature. Partial miscibility has been generally found in melt blends of the two polymers. However, in solution cast blends they were found to be immiscible. It is known that the transesterification takes place in the melt. Copolyesters formed by the transesterification change the compatibility of PC and PBT. In this work PC/PBT melt blends of various composition were investigated in dependence on the copolyester content by means of DSC and NMR. It can be shown that the time regime of the thermal treatment in the melt determines the transesterification degree. The PBT crystallization behavior is strongly influenced by both the PC and copolyester content. The glass transition temperatures of the PBT-rich and PC-rich phase approach each other with the increasing copolyester content. The analysis of the glass transition behavior permits the conclusion that PC and PBT are inherently immiscible provided that the copolyester content is exactly zero. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2161–2168, 1997  相似文献   

9.
The miscibility and the isothermal crystallization kinetics for PBT/Epoxy blends have been studied by using differential scanning calorimetry, and several kinetic analyses have been used to describe the crystallization process. The Avrami exponents n were obtained for PBT/Epoxy blends. An addition of small amount of epoxy resin (3%) leads to an increase in the number of effective nuclei, thus resulting in an increase in crystallization rate and a stronger trend of instantaneous three‐dimensional growth. For isothermal crystallization, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of PBT component in the PBT/Epoxy blends. The Lauritzen–Hoffman equation for DSC isothermal crystallization data revealed that PBT/Epoxy 97/3 had lower nucleation constant Kg than 100/0, 93/7, and 90/10 PBT/Epoxy blends. Analysis of the crystallization data of PBT/Epoxy blends showed that crystallization occurs in regime II. The fold surface free energy, σe = 101.7–58.0 × 10?3 J/m2, and work of chain folding, q = 5.79–3.30 kcal/mol, were determined. The equilibrium melting point depressions of PBT/Epoxy blends were observed and the Flory–Huggins interaction parameters were obtained. It indicated that these blends were thermodynamically miscible in the melt. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1320–1330, 2006  相似文献   

10.
The isothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) (PBT) in binary blends with poly(ε-caprolactone) (PCL) was investigated as a function of PCL molecular mass by differential scanning calorimetry and optical microscopy. The components are miscible in the melt when oligomeric PCL (Mw = 1250) is blended with PBT, whereas only partial miscibility was found in mixtures with higher molecular mass (Mw = 10,000 and 50,000). The equilibrium melting point of PBT in the homopolymer and in blends with PCL was determined through a non-linear extrapolation of the Tm = f(Tc) curve. The PBT spherulitic growth rate and bulk crystallization rate were found to increase with respect to plain PBT in blends with PCL1250 and PCL10000, whereas addition of PCL50000 causes a reduction of PBT solidification rate. The crystallization induction times were determined by differential scanning calorimetry for all the mixtures through a blank subtraction procedure that allows precise estimation of the crystallization kinetics of fast crystallizing polymers. The results have been discussed on the basis of the Hoffman-Lauritzen crystallization theory and considerations on both the transport of chains towards the crystalline growth front and the energy barrier for the formation of critical nuclei in miscible and partially miscible PBT/PCL mixtures are widely debated.  相似文献   

11.
Differential scanning calorimetry (DSC) and thermo-optical analysis (TOA) were applied to study the phase transitions phenomena of thermotropic liquid crystalline polymer and its blends with polycarbonate. It was found that both methods are complementary. Glass transition temperatures of the blends of polycarbonate with liquid crystalline polymer were measured and discussed.  相似文献   

12.
研究了介观相分离对烯烃嵌段共聚物(OBC)结晶动力学的影响.结果表明,OBC在保持介观相分离形态的情况下,结晶以三维生长的方式进行.原因可能是由于OBC的“相区溶合”造成的.OBC嵌段长度和嵌段数目存在一定的统计分布,其中某些较短的结晶性链段“溶解”于非晶区,这部分结晶性链段在结晶时起到了“传递”结晶的作用.  相似文献   

13.
Fully biodegradable poly(butylene succinate) (PBS) and poly(butylene carbonate) (PBC) blends were prepared by melt blending. Miscibility, thermal properties, crystallization behavior and mechanical properties of PBS/PBC blends were investigated by scanning electron microscopy (SEM), phase contrast optical microscopy (PCOM), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and mechanical properties tests. The SEM and PCOM results indicated that PBS was immiscible with PBC. The WAXD results showed that the crystal structures of both PBS and PBC were not changed by blending and the two components crystallized separately in the blends. The isothermal crystallization data showed that the crystallization rate of PBS increased with the increase of PBC content in the blends. The impact strength of PBS was improved significantly by blending with PBC. When the PBC content was 40%, the impact strength of PBS was increased by nearly 9 times.  相似文献   

14.
The effects of molecular orientation on the crystallization and polymorphic behaviors of syndiotactic polystyrene (sPS) and sPS/poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) blends were studied with wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry. The oriented amorphous films of sPS and sPS/PPO blends were crystallized under constraint at crystallization temperatures ranging from 140 to 240°C. The degree of crystallinity was lower in the cold‐crystallized oriented film than in the cold‐crystallized isotropic film. This was in contrast to the case of the cold crystallization of other polymers such as poly(ethylene terephthalate) and isotactic polystyrene, in which the molecular orientation induced crystallization and accelerated crystal growth. It was thought that the oriented mesophase was obtained in drawn films of sPS and that the crystallization of sPS was suppressed in that phase. The WAXD measurements showed that the crystal phase was more ordered in an sPS/PPO blend than in pure sPS under the same annealing conditions. The crystalline order recovered in the cold‐crystallized sPS/PPO blends in comparison with the cold‐crystallized pure sPS because of the decrease in the mesophase content. The crystal forms depended on the crystallization temperature, blend composition, and molecular orientation. Only the α′‐crystalline form was obtained in cold‐crystallized pure sPS, regardless of molecular orientation, whereas α′, α″, and β′ forms coexisted in the cold‐crystallized sPS/PPO blends prepared at higher crystallization temperatures (200–240°C). The β′‐form content was much lower in the oriented sPS/PPO blend than in the isotropic blend sample at the same temperature and composition. It was concluded that the oriented mesophase suppressed the crystallization of the stable β′ form more than that of the metastable α′ and α″ forms during the cold crystallization of sPS/PPO blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1665–1675, 2003  相似文献   

15.
The isothermal crystallization kinetics of poly(ethylene terephthalate) (PET) in blends with a fully aromatic liquid crystalline copolyester (Vectra A) were studied with differential scanning calorimetry. PET crystallization rates decreases with increasing Vectra fractions in the blends, and the percentage of PET that is crystalline also decreases with increasing Vectra. The equilibrium PET melting temperature for blends containing 40% or more Vectra is unambiguously below that of pure PET. Attenuated total reflectance Fourier-transform infrared spectroscopy measurements indicate that PET/Vectra transesterification does not take place. The results are consistent with a scenario based on prior NMR data in which there is some interphase mixing between the liquid crystalline and flexible polymers and an increase in the fraction of gauche conformers in the PET.  相似文献   

16.
Abstract

Polyester elastomer (PEL) blends having a hard segment of polyester (PBT), soft segment of polyether (PTMG), and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate) were prepared with a twin-screw extruder. Test specimens for thermal properties were prepared by injection molding. Rheological properties and morphology were investigated by Instron capillary rheometer (ICR) and scanning electron microscopy (SEM). Thermal properties of the LCP/PEL blends were investigated by DSC, dilatometer, heat deflection temperature tester, and a Rheovibron viscometer. DSC study revealed a partial miscibility between LCP and PEL. It was found that the LCP acted as a nucleating agent for the crystallization of PEL in the LCP/PEL blends. The dimensional and thermal stability of the blends were increased by increasing the LCP cont-ent. The storage modulus (E' was improved by increasing the LCP content. The blend viscosity showed a minimum value at 5 wt% of LCP which increased by increasing the LCP content above 5 wt% of LCP The morphology of the LCP/PEL blends showed poor interfacial adhesion between the two phases, and the fibrillar structure of LCP phase in the matrix was affected by the LCP content, shear rate, and extrusion temperature. The morphology of the blends was found to be affected by their compositions and processing conditions.  相似文献   

17.
Miscibility of blends composed by a linear unsaturated polyester (LUP) with poly(ε-caprolactone) (PCL) of different molecular weights (Mw = 50 × 103, 18 × 103 and 2 × 103) has been studied. The blends were subjected to different thermal treatments and have been studied by FT-IR spectroscopy, differential scanning calorimetry (DSC) and scanning electronic microscopy (ESEM). FT-IR results allow proving the miscibility of the blends at temperatures above the melting temperature of neat PCL. DSC measurements confirm the existence of a crystalline phase corresponding to neat PCL. The crystallization of PCL is observed in a wide range of blends composition, being detected in all the blend compositions when the crystallization time increases. Thermograms show clearly the glass transition temperatures of samples that have been rapidly quenched from the melt. However, the change in the heat flow corresponding to the glass transition temperatures is difficult to detect in samples with high PCL crystallization degree. The analysis of the results indicates that the morphology of the amorphous phase is heterogeneous for LUP + PCL blends and changes depending on the thermal treatment. The ESEM measurements, confirm the heterogeneity of the amorphous phase. The decrease of the molecular weight of the PCL favours the miscibility of the blends.  相似文献   

18.
聚乳酸/羧基化聚丙烯共混物的形态与热性能研究   总被引:1,自引:0,他引:1  
以扫描电子显微镜、热重分析仪、差示扫描量热仪、热台偏光显微镜分别研究了聚乳酸/羧基化聚丙烯共混体系的相形态、热性能和结晶形态.结果显示,共混物熔体冷却时,聚乳酸和羧基化聚丙烯均形成球晶,但羧基化聚丙烯球晶较大而十字消光较暗,聚乳酸球晶尺寸较小而十字消光较亮,且聚乳酸球晶产生规则的、不连续的同心环线——裂纹,裂纹厚度约为1~2μm,且裂纹内部有微纤存在.当聚乳酸含量≤50%时,由于聚丙烯上羧基的存在而使共混体系具有较好的相容性.共混物的热分解过程分为三个阶段,热分解温度的变化是聚丙烯上的羧基、聚乳酸和聚丙烯骨架分解三种机制共同作用的结果,少量聚乳酸能够明显提高共混物中聚丙烯上羧基的热稳定性.共混物中的羧基化聚丙烯组分可以发挥稀释剂的作用,大幅度降低了聚乳酸的冷结晶温度.聚乳酸含量≥50%时,共混熔体降温时DSC谱图中聚乳酸和羧基化聚丙烯分别结晶,而聚乳酸含量<50%时,只观察到羧基化聚丙烯的结晶行为.  相似文献   

19.
We prepared blends of poly(butylene‐2,6‐naphthalate) (PBN) and poly(ether imide) (PEI) by solution‐casting from dichloroacetic acid solutions. The miscibility, crystallization, and melting behavior of the blends were investigated with differential scanning calorimetry (DSC) and dynamic mechanical analysis. PBN was miscible with PEI over the entire range of compositions, as shown by the existence of single composition‐dependent glass‐transition temperatures. In addition, a negative polymer–polymer interaction parameter was calculated, with the Nishi–Wang equation, based on the melting depression of PBN. In nonisothermal crystallization investigations, the depression of the crystallization temperature of PBN depended on the composition of the blend and the cooling rate; the presence of PEI reduced the number of PBN segments migrating to the crystallite/melt interface. Melting, recrystallization, and remelting processes occurring during the DSC heating scan caused the occurrence of multiple melting endotherms for PBN. We explored the effects of various experimental conditions on the melting behavior of PBN/PEI blends. The extent of recrystallization of the PBN component during DSC heating scans decreased as the PEI content, the heating rate, the crystallization temperature, and the crystallization time increased. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1694–1704, 2004  相似文献   

20.
Liquid crystalline polymer/polyamide 66 (LCP/PA66) and LCP/poly(butyl terephthalate) (LCP/PBT) blends were compounded using a Brabender Plasticorder equipped with a mixing chamber. The LCP employed was a semi-flexible liquid crystalline copolyesteramide based on 30 mol% of p-amino benzoic acid (ABA) and 70 mol% of poly(ethylene terephthalate) (PET). The Flory-Huggins interaction parameters (χ12) of the LCP/ PA66 and LCP/PBT blends are estimated by melting point depression from DSC measurement. The results indicate that c12 values all are negative for LCP/PA66 and LCP/PBT blends, and when the LCP content in these blends is more than 10 mass%, the absolute value of χ12 decreases. Thereby, we can conclude that LCP/PA66 and LCP/PBT blends are fully miscible in the molten state, the molecular interaction between the LCP and PA66 is stronger than that between LCP and PBT. As the LCP content in LCP/PA66 and LCP/PBT blends is more than 10 mass%, the molecular interaction between LCP and matrix polymer decreases. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号