首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Evidence is presented for the gas phase generation of at least eight stable isomeric [C2H7O2]+ ions. These include energy-rich protonated peroxides (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_2 {\rm O}\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (e), \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm (H)OH} $\end{document} (f) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm O}\mathop {\rm O}\limits^{\rm + } {\rm (H)CH}_{\rm 3} {\rm (g)),} $\end{document} (g)), proton-bound dimers (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH = O} \cdot \cdot \cdot \mathop {\rm H}\limits^{\rm 3} \cdot \cdot \cdot {\rm OH}_{\rm 2} $\end{document} (h) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH2 = O} \cdot \cdot \cdot \mathop {\rm H}\limits^{\rm + } \cdot \cdot \cdot {\rm HOCH}_{\rm 3} $\end{document} (i)) and hydroxy-protonated species (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} {\rm (OH)CH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} (a), $\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH(OH)}\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (b) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm OCH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (c)). The important points of the present study are (i) that these ions are prevented by high barriers from facile interconversion and (ii) that both electron-impact- and proton-induced gas phase decompositions seem to proceed via multistep reactions, some of which eventually result in the formation of proton-bound dimers.  相似文献   

2.
Charge transfer (CT) interaction is described in semiconducting dispersions of TCNQ complex salt \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm Et}_3 {\rm NH}^+ ({\rm TCNQ})_2^{\cdot^{\hskip-3.7pt\hbox{--}}}$\end{document} with and without added TCNQ°, in poly(vinyl acetal) matrices in which the electron-donor moiety is varied. The extent of CT interaction was determined in films and in solution (DMF, acetonitrile, or methylene chloride) through the absorbances at 398 nm (\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm TCNQ}{\ }^{\cdot^{\hskip-3.7pt\hbox{--}}}$\end{document} and TCNQ°) and 857 nm \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm TCNQ}{\ }^{\cdot^{\hskip-3.7pt\hbox{--}}}$\end{document}. Resistivity of the conductive films was related to the stoichiometry of TCNQ species in the films and found to have a minimum at \documentclass{article}\pagestyle{empty}\begin{document}$[{\rm TCNQ}^\circ]/[{\rm TCNQ}{\ }^{\cdot^{\hskip-3.7pt\hbox{--}}}]\simeq 1$\end{document}. Lower resistivities were attained with films having a uniform, densely packed dispersion of microcrystallites which were obtained at a relatively slow solvent removal rate. With this particular complex salt, strong electron-donor polymers are found to be better matrices for semiconductivity.  相似文献   

3.
The radical anions of 1,8-diphenylnaphthalene ( 1 ) and its decadeuterio-(D10- 1 ) and dimethyl-( 2 ) derivatives, as well as those of [2.0.0] (1,4)benzeno(1,8)naphthaleno(1,4)benzenophane ( 3 ) and its olefinic analogue ( 4 ) have been studied by ESR and ENDOR spectroscopy, At a variance with a previous report, the spin population in \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {1}^{-\kern-4pt {.}} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {2}^{-\kern-4pt {.}} $\end{document} is to a great extent localized in the naphthalene moiety. A similar spin distribution is found for \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {3}^{-\kern-4pt {.}} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {4}^{-\kern-4pt {.}} $\end{document}. The ground conformations of \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {1}^{-\kern-4pt {.}} $\end{document}-\documentclass{article}\pagestyle{empty}\begin{document}$ \rm {4}^{-\kern-4pt {.}} $\end{document} are chiral of C2 symmetry. For \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {1}^{-\kern-4pt {.}} $\end{document}, an energy barrier between these conformations and the angle of twist about the bonds linking the naphthalene moiety with the phenyl substituents were estimated as ca. 50 kJ/mol and ca. 45°, respectively. The radical trianions of 1 , D10- 1 , and 2 , have also been characterized by their hyperfine data. In \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {1}^{3-\kern-4pt {.}} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {2}^{3-\kern-4pt {.}} $\end{document}, the bulk of the spin population resides in the two benzene rings so that these radical trianions can be regarded as the radical anions of ‘open-chain cyclophanes’ with a fused naphthalene π-system bearing almost two negative charges. The main features of the spin distribution in both \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {1}^{-\kern-4pt {.}} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \rm {1}^{3-\kern-4pt {.}} $\end{document} are correctly predicted by an HMO model of 1 .  相似文献   

4.
Several \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm C}_{{\rm 4}} {\rm H}_{{\rm\ 8}} } \right]_{}^{_.^ + } $\end{document} ion isomers yield characteristic and distinguishable collisional activation spectra: \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm 1-butene} } \right]_{}^{_.^ + } $\end{document} and/or \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm 2-butene} } \right]_{}^{_.^ + } $\end{document} (a-b), \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm isobutene} } \right]_{}^{_.^ + } $\end{document} (c) and [cyclobutane]+ (e), while the collisional activation spectrum of \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm methylcyclopropane} } \right]_{}^{_.^ + } $\end{document} (d) could also arise from a combination of a-b and c. Although ready isomerization may occur for \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm C}_{{\rm 4}} {\rm H}_{{\rm 8}} } \right]_{}^{_.^ + } $\end{document} ions of higher internal energy, such as d or ea, b, and/or c, the isomeric product ions identified from many precursors are consistent with previously postulated rearrangement mechanisms. 1,4-Eliminations of HX occur in 1-alkanols and, in part, 1-buthanethiol and 1-bromobutane. The collisional activation data are consistent with a substantial proportion of 1,3-elimination in 1- and 2-chlorobutane, although 1,2-elimination may also occur in the latter, and the formation of the methylcycloprpane ion from n-butyl vinyl ether and from n-butyl formate. Surprisingly, cyclohexane yields the \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm linear butene} } \right]_{}^{_.^ + } $\end{document} ions a-b, not \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm cyclobutane} } \right]_{}^{_.^ + } $\end{document}, e.  相似文献   

5.
6.
The formation of the styryl ion \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm PhCH = }\mathop {\rm C}\limits^{\rm + } {\rm H} $\end{document} in the mass spectra of some cinnamic compounds is shown to occur via the intermediate formation of the cinnamoyl ion \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm Ph} - {\rm CH} = {\rm CH} - {\rm C} \equiv \mathop {\rm O}\limits^{\rm + } $\end{document} rather than by direct cleavage of the bond α to the double bond.  相似文献   

7.
The rate constants for the protonation of “free” (that is, solvated) superoxide ions by water and ethanol are equal to 0.5–3.5 ×10?3M?1·s?1 in DMF and AN at 20º. It has been found that the protonation rates for the ion pairs of \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document} with the Bu4N+ cation are much slower than those for “free” \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document}. It is suggested that the effects of aprotic solvents on the protonation rates of \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document} are mainly due to the fact that the proton donors form solvated complexes of different stability in these solvents.  相似文献   

8.
From a combination of isotopic substitution, time-resolved measurements and sequential collision experiments, it was proposed that whereas ionized methyl acetate prior to fragmentation rearranges largely into \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 \mathop {\rm C}\limits^ + ({\rm OH}){\rm O}\mathop {\rm C}\limits^{\rm .} {\rm H}_2 $\end{document}, in contrast, methyl propanoate molecular ions isomerize into \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_2 {\rm CH}_2 \mathop {\rm C}\limits^ + ({\rm OH}){\rm OCH}_3 $\end{document}. Metastably fragmenting methyl acetate molecular ions are known predominantly to form H2?OH together with \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 - \mathop {\rm C}\limits^ + = {\rm O} $\end{document}, whereas ionized methyl propanoate largely yields H3CO˙ together with \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 {\rm CH}_2 - \mathop {\rm C}\limits^ + = {\rm O} $\end{document}. The observations were explained in terms of the participation of different distonic molecular ions. The enol form of ionized methyl acetate generates substantially more H3CO˙ in admixture with H2?OH than the keto tautomer. This is ascribed to the rearrangement of the enol ion to the keto form being partially rate determining, which results in a wider range of internal energies among metastably fragmenting enol ions. Extensive ab initio calculations at a high level of theory would be required to establish detailed reaction mechanisms.  相似文献   

9.
The rearrangement products obtained upon reduction of 1,6-methano[10]-annulene ( 1 ) and its 11-halogen derivatives have been studied by ESR. and, in part, by ENDOR. spectroscopy. These derivatives comprise 11,11-difluoro- ( 2 ), 11-fluoro- ( 3 ), 11,11-dichloro- ( 4 ) and 11-bromo-1,6-methano[10]annulene ( 5 ), as well as the 2,5,7,10-tetradeuteriated compounds 2 -D4 and 3 -D4. The studies of the secondary products in question have been initiated by the finding that the radical anion of 11,11-dimethyltricyclo[4.4.1.01,6]undeca-2,4,7,9-tetraene ( 12 ), i.e., the prevailing valence isomer of 11,11-dimethyl-1,6-methano[10]annulene, undergoes above 163 K a rearrangement to the radical anion of 5,5-dimethylbenzocycloheptene ( 14 ). A rearrangement of this kind also occurs for the radical anion of the parent compound 1 , albeit only above 323 K. The lower reactivity of 1 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} relative to 12 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} is rationalized by the assumption that the first and rate determining step in the case of 1 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} is the valence isomerization to the radical anion of tricyclo[4.4.1.01,6]undeca-2,4,7,9-tetraene ( 1a ). In the reducing medium used in such reactions (potassium in 1,2-dimethoxyethane), the final paramagnetic product of 1 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} is not 5H-benzocycloheptene ( 15 ), but the benzotropylium radical dianion ( ). This product ( ) is also obtained from the radical anions of the halogen-substituted 1,6-methano[10]annulenes, 2 to 5 , in the same medium. The temperatures required for the conversion of 2 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} and 3 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} into lie above 293 and 243 K, respectively, whereas the short-lived species 4 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} and 5 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} undergo such a rearrangement already at 163 K. The stability of the four halogen-substituted radical anions thus decreases in the sequence 2 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} > 3 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} > 4 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} ≈ 5 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document}. Replacement of 2 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} and 3 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} by 2 -D4\documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} and 3 -D4\documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document}, respectively, leads to 1,4,5,8-tetradeuteriobenzotropylium radical dianion ( ). Experimental evidence and theoretical arguments indicate that the rearrangements in question are initiated by a loss of one ( 3 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} and 5 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document}) or two ( 2 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document} and 4 \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document}) halogen atoms. Such a reaction step must involve the intermediacy of the radical 19 · (see below) which rapidly isomerizes to the benzotropylium radical 16 :. Support for the transient existence of 19 . is provided by the thermolysis of 1,6-methano [10]annulene-11-t-butylperoxyester (6) which yields 16 . in a temperature dependent equilibrium with a mixture of its dimers ( 16 2). In the hitherto unreported ESR. spectra of 2\documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document}. and 3\documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}} $\end{document}, the coupling constants of the ring protons differ considerably from the analogous values for the radical anions of other 1,6-bridged [10]annulenes. These differences strongly suggest that the fluoro-substitution substantially affects the character of the singly occupied orbital.  相似文献   

10.
The radical cations and anions of naphtho [1,8-cd]-[1,2,6]thiadiazine (1) and 6,7-dihydroacenaphtho [5, 6-cd]-[1,2,6]thiadiazine (2) , as well as the radical anion of acenaphtho [5, 6-cd]-[1,2,6]thiadiazine (3) have been characterized by ESR. spectroscopy. The π-spin distributions in the radical cations \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\oplus \atop \dot{}}$\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ 2^{\oplus \atop \dot{}}$\end{document} strongly resemble those in the iso-π-electronic phenalenyl radical. A prominent feature of the radical anions \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}}$\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}$ 2^{\ominus \atop \dot{}}$\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ 3^{\ominus \atop \dot{}}$\end{document} is the substantial localization of the π-spin population on the thiadiazine fragment. These findings are satisfactorily accounted for by HMO models using conventional heteroatom parameters.  相似文献   

11.
Ab initio molecular orbital calculations with split-valence plus polarization basis sets and incorporating electron correlation and zero-point energy corrections have been used to examine possible equilibrium structures on the [C2H7N]+˙ surface. In addition to the radical cations of ethylamine and dimethylamine, three other isomers were found which have comparable energy, but which have no stable neutral counterparts. These are \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}and\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm }, $\end{document} with calculated energies relative to the ethylamine radical cation of ?33, ?28 and 4 kJ mol?1, respectively. Substantial barriers for rearrangement among the various isomers and significant binding energies with respect to possible fragmentation products are found. The predictions for \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^ + {\rm H}_{\rm 3} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3}$\end{document} are consistent with their recent observation in the gas phase. The remaining isomer, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm },$\end{document}is also predicted to be experimentally observable.  相似文献   

12.
Characterization of [C4H5O]+ ions in the gas phase using their collisional activation spectra shows that the four C3H5\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O isomers CH2?C(CH3)\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O, CH2?CHCH2\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O, CH3CH?CH\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O and ?? \documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O are stable for ≥ 10?5 s. It is concluded further from the characteristic shapes for the unimolecular loss of CO from C3H5\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O ions generated from a series of precursor molecules that the CH2?CH(CH3)\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O- and CH2?CHCH2\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O-type ions dissociate over different potential surfaces to yield [allyl]+ and [2-propenyl]+ [C3H5]+ product ions respectively. Cyclopropyl carbonyl-type ions lose CO with a large kinetic energy release, which points to ring opening in the transition state, whereas this loss from CH3CH?CH\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O-type ions is proposed to occur via a rate determining 1,2-H shift to yield 2-propenyl cations.  相似文献   

13.
The ESR. spectrum of the relatively unstable radical anion of diphenylcyclo-propenone (II) has been observed upon electrolytic reduction of II in N,N-di-methylformamide and 1,2-dimethoxyethane. Simple MO models account well for the π-spin distribution and for the restricted rotation of the phenyl substituents in II\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document}. A rather facile loss of a CO molecule by II\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document} results in formation of the radical anion of tolane (diphenylacetylene; III). No ESR. spectra could be obtained for the radical anions of dialkylcyclopropenones which are even shorter-lived than II\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document}, although decay by decarbonylation seems to be less favoured with them than with II\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document}. In presence of air, electrolytic reduction of either II or its dimethyl and di-t-butyl analogues yields the correspondingly disubstituted semidione anions.  相似文献   

14.
ESR studies of ultraviolet-irradiated polyethylene (PE) were carried out. Irradiation effects different from those of high-energy radiation are observed. Ultraviolet radiation is absorbed selectively, and especially in carbonyl groups in PE produced by oxidation. Radicals produced were identified as \documentclass{article}\pagestyle{empty}\begin{document}$ \hbox{---} {\rm CH}_2 \hbox{---} {\dot {\rm C}} {\rm H} \hbox{---}{\rm CHO}$\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \hbox{---} {\rm CH}_2 \hbox{---} {\dot {\rm C}} {\rm H} \hbox{---}{\rm CH}_2 \hbox{---}$\end{document}. Some radicals giving a quintet signal stable at room temperature were also observed but remained unidentified. The radical \documentclass{article}\pagestyle{empty}\begin{document}$ \hbox{---} {\rm CH}_2 \hbox{---} {\dot {\rm C}} {\rm H} \hbox{---}{\rm CHO}$\end{document} undergoes a mutual conversion with the acyl radical:   相似文献   

15.
The steady-state viscosity η, the dynamic viscosity η′, and the storage modulus G′ of several high-density and low-density polyethylene melts were investigated by using the Instron rheometer and the Weissenberg rheogoniometer. The theoretical relation between the two viscosities as proposed earlier is:\documentclass{article}\pagestyle{empty}\begin{document}$ \eta \left( {\dot \gamma } \right){\rm } = {\rm }\int {H\left( {\ln {\rm }\tau } \right)} {\rm }h\left( \theta \right)g\left( \theta \right)^{{\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}} \tau {\rm }d{\rm }\ln {\rm }\tau $\end{document}, where \documentclass{article}\pagestyle{empty}\begin{document}$ \theta {\rm } = {\rm }{{\dot \gamma \tau } \mathord{\left/ {\vphantom {{\dot \gamma \tau } 2}} \right. \kern-\nulldelimiterspace} 2} $\end{document}; \documentclass{article}\pagestyle{empty}\begin{document}$ {\dot \gamma } $\end{document} is the shear rate, H is the relaxation spectrum, τ is the relaxation time, \documentclass{article}\pagestyle{empty}\begin{document}$ g\left( \theta \right){\rm } = {\rm }\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\left[ {\cot ^{ - 1} \theta {\rm } + {\rm }{\theta \mathord{\left/ {\vphantom {\theta {\left( {1 + \theta ^2 } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + \theta ^2 } \right)}}} \right] $\end{document}, and \documentclass{article}\pagestyle{empty}\begin{document}$ h\left( \theta \right){\rm } = {\rm }\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\left[ {\cot ^{ - 1} \theta {\rm } + {\rm }{{\theta \left( {1{\rm } - {\rm }\theta ^2 } \right)} \mathord{\left/ {\vphantom {{\theta \left( {1{\rm } - {\rm }\theta ^2 } \right)} {\left( {1{\rm } + {\rm }\theta ^2 } \right)^2 }}} \right. \kern-\nulldelimiterspace} {\left( {1{\rm } + {\rm }\theta ^2 } \right)^2 }}} \right] $\end{document}. Good agreement between the experimental and calculated values was obtained, without any coordinate shift, for high-density polyethylenes as well as for a low density sample with low nw, the weight-average number of branch points per molecule. The correlation, however, was poor with low-density samples with large values of the long-chain branching index nw. This lack of coordination can be related to nw. The empirical relation of Cox and Merz failed in a similar way.  相似文献   

16.
Methods are described for the unequivocal identification of the acetyl, [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document} ?O] (a), 1-hydroxyvinyl, [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] (b), and oxiranyl, (d), cations. They involve the careful examination of metastable peak intensities and shapes and collision induced processes at very low, high and intermediate collision gas pressures. It will be shown that each [C2H3O]+ ion produces a unique metastable peak for the fragmentation [C2H3O]+ → [CH3]++CO, each appropriately relating to different [C2H3O]+ structures. [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] ions do not interconvert with any of the other [C2H3O]+ ions prior to loss of CO, but deuterium and 13C labelling experiments established that [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] (b) rearranges via a 1,2-H shift into energy-rich leading to the loss of positional identity of the carbon atoms in ions (b). Fragmentation of b to [CH3]++CO has a high activation energy, c. 400 kJ mol?1. On the other hand, , generated at its threshold from a suitable precursor molecule, does not rearrange into [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH], but undergoes a slow isomerization into [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] via [CH2\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}HO]. Interpretation of results rests in part upon recent ab initio calculations. The methods described in this paper permit the identification of reactions that have hitherto lain unsuspected: for example, many of the ionized molecules of type CH3COR examined in this work produce [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] ions in addition to [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] showing that some enolization takes place prior to fragmentation. Furthermore, ionized ethanol generates a, b and d ions. We have also applied the methods for identification of daughter ions in systems of current interest. The loss of OH˙ from [CH3COOD] generates only [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OD]. Elimination of CH3˙ from the enol of acetone radical cation most probably generates only [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] ions, confirming the earlier proposal for non-ergodic behaviour of this system. We stress, however, that until all stable isomeric species (such as [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^{\rm + } $\end{document}?C:]) have been experimentally identified, the hypothesis of incompletely randomized energy should be used with reserve.  相似文献   

17.
The mechanism of the crosslinking reaction in the copolymerization of poly(ethylene fumarate) and styrene has been studied by using partial conversion number-average molecular weights and viscosities. In dilute solution the reaction is mainly the formation of intramolecular crosslinks, illustrated by a reduced dependence of \documentclass{article}\pagestyle{empty}\begin{document}$\overline{\overline M}_n$\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$[\overline{\overline \eta}]$\end{document} on conversion. Increasing the monomer concentrations increases the contribution from intermolecular reactions and gives a much greater dependence of \documentclass{article}\pagestyle{empty}\begin{document}$\overline{\overline M}_n$\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$[\overline{\overline \eta}]$\end{document} on conversion.  相似文献   

18.
ESR, ENDOR, and TRIPLE resonance studies have been performed on the radical anions of 1,2-diphenylcyclohex-1-ene ( 4 ), 1,2-di(perdeuteriophenyl)cyclohex-1-ene ((D10) 4 ) the trans-configurated 3,4-diphenyl-8-oxabicyclo[4.3.0]non-3-ene ( 5 ) and its 2,2,5,5-tetradeuterio derivative (D4) 5 , and 2,3-diphenyl-8,9,10-trinorborn-2-ene ( 6 ). The spectra of \documentclass{article}\pagestyle{empty}\begin{document}$ 4^{- \atop \dot{}} $\end{document} exhibit strong temperature dependence along with a specific broadening of ESR hyperfine lines and proton ENDOR signals. The coupling constant, which bears the main responsibility for these features, is that of the β-protons in the quasi-equatorial positions of the cyclohexene ring, and the experimental findings are readily rationlized in terms of relatively modest conformational changes without invoking the inversion of the half-chair form. The hyperfine data for the β-protons in \documentclass{article}\pagestyle{empty}\begin{document}$ 5^{- \atop \dot{}} $\end{document} closely resemble the corresponding low-temperature values for \documentclass{article}\pagestyle{empty}\begin{document}$ 4^{- \atop \dot{}} $\end{document}, However, the ‘unusual’ features observed for \documentclass{article}\pagestyle{empty}\begin{document}$ 4^{- \atop \dot{}} $\end{document} are absent in the ESR and ENDOR spectra of \documentclass{article}\pagestyle{empty}\begin{document}$ 5^{- \atop \dot{}} $\end{document}, because the half-chair conformation of the cyclohexene ring in \documentclass{article}\pagestyle{empty}\begin{document}$ 5^{- \atop \dot{}} $\end{document} is deprived of its flexibility. Although the boat form of this ring in \documentclass{article}\pagestyle{empty}\begin{document}$ 6^{- \atop \dot{}} $\end{document} is also rigid, the spectra of \documentclass{article}\pagestyle{empty}\begin{document}$ 6^{- \atop \dot{}} $\end{document} are temperature-dependent, due to an interconversion between two propeller-like conformations of the phenyl groups. The pertinent barrier is 30 ± 5 kJ ·mol?1. An analogous interconversion presumably takes place in \documentclass{article}\pagestyle{empty}\begin{document}$ 4^{- \atop \dot{}} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ 5^{- \atop \dot{}} $\end{document} as well, but, unlike \documentclass{article}\pagestyle{empty}\begin{document}$ 6^{- \atop \dot{}} $\end{document}, it is not amenable to experimental study.  相似文献   

19.
20.
Ion cyclotron resonance spectrometry and deuterium labeling have been used to determine that nondecomposing \documentclass{article}\pagestyle{empty}\begin{document}${\rm (CH}_{\rm 3} {\rm)}_{\rm 2} \mathop {\rm N}\limits^{\rm + } {\rm = CH}_{\rm 2}$\end{document} ions do not isomerize to \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} {\rm CH = }\mathop {\rm N}\limits^{\rm + } {\rm HCH}_{\rm 3}$\end{document}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号