首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Nylon 6–PIB diblock, triblock, and tristar radial block copolymers have been synthesized from telechelic hydroxyl-terminated polyisobutylene, PIB(OH)n (n = 1,2,3), by conversion of this prepolymer with hexamethylene diisocyanate (HMDI), toluene diisocyanate (TDI), N-chlorocarbonyl diisocyanate (NCCI), and oxalyl chloride (OxCl) and using the resulting materials as macroactivators for anionic caprolactam polymerization. Prepolymers with molecular weights from 6000 to 38,000 have been employed. Derivatization with NCCI and subsequent anionic caprolactam polymerization gave highest yields and blocking efficiencies. The block copolymers have been characterized by molecular weight and composition. In addition to the expected Tg and Tm characteristics of long PIB and nylon 6 segments, DSC studies showed an intermediate glass transition at ca. ?20°C. Transmission electron microscopy of di-, tri-, and radial blocks show increasing segregation and orientation of rubbery/crystalline domains. Tensile strengths and elongations of the block copolymers range from 16.5 to 41 MPa and 15 to 30%, respectively, and stress-strain diagrams show the effect of block architecture on these properties.  相似文献   

2.
Copolymers of tetrafluoroethylene and propylene were prepared that contained 30–65 mole-% of the former. Reactivity ratios of tetrafluoroethylene- and propylene-ended radicals are 0.008 and 0.06, respectively, resulting in formation of highly alternating copolymers. The glass temperatures, Tg, were determined using a differential scanning calorimeter. Values ranged from 260 to 275°K. A plot of Tg versus composition has a low maximum centered about the equimolar composition. Copolymers of tetrafluoroethylene and isobutylene were prepared that contained 30–56 mole-% of the former. Reactivity ratios of tetrafluoroethylene- and isobutylene-ended radicals are 0.005 and 0.021, respectively. The glass temperatures of these copolymers range from 257 to 313°K. A higher maximum at the equimolar composition is obtained when Tg is plotted versus composition. Isobutylene-containing copolymers having 45–54 mole-% tetrafluoroethylene are crystalline. Melting temperatures range from 416 to 476°K and have their maximum value at the equimolar composition. It is thought that long sequences of alternating units behave as a third entity in these copolymers, the other two being nonalternating units of the two monomers. Unless inhibited, ionic homopolymerization of isobutylene can be appreciable, sometimes resulting in the polymer having two Tg.  相似文献   

3.
Three novel diamines, incorporating benzimidazole and amide moieties, namely 4-amino-N-(5-amino-benzimidazol-2-yl)-benzamide (6a), 4-amino-N-(5-amino-1- methyl-benzimidazol-2-yl)-benzamide (6b), and 4-amino-N-(5-amino-1-phenyl -benzimidazol-2-yl)-benzamide (6c), were designed and synthesized. A series of poly(benzimidazole-amide-imide) (PBIAI) films were prepared from the resulting diamines and 4,4-biphthalic dianhydride (BPDA). These flexible polyimides (PIs) showed high glass transition temperatures (Tg = 353–379°C), low coefficients of thermal expansion (CTE = 3.7–12.3 ppm K−1) and good mechanical properties (σ = 152–207 MPa and E = 4.5–7.7 GPa), promising candidates for applications in flexible-display substrates. Furthermore, the data guided a feasible method to enhance Tg and reduce CTE by introducing benzimidazole and amide units into PI main chains, and the effect of different N-substituents on performance was revealed.  相似文献   

4.
When N-(4-aminobenzoyl)–caprolactam (PAC) is injected into polymer melts, dispersions of anisotropic polyaramide particles with average diameters of 100–400 nm and aspect ratios of 5–10 are formed within few minutes. At 200°C PAC dispersion polymerization yields caprolactam and predominantly poly(p-phenylenebenzamide), whereas with increasing polymerization temperatures PAC ring-opening polymerization accounts for the incorporation of 6-aminocaproic acid units into the polyaramide backbone. Covalent bond formation between microparticle surfaces and functional groups of the matrix polymer provides excellent interfacial adhesion and stabilizes the anisotropic polyaramide microparticle dispersions. This in situ PAC dispersion polymerization during melt processing, producing polyaramide-whisker reinforced thermoplastics, represents a versatile route to organic microcomposites exhibiting improved stiffness and strength.  相似文献   

5.
Four well‐defined diblock copolymers and one statistical copolymer based on lauryl methacrylate (LauMA) and 2‐(acetoacetoxy)ethyl methacrylate (AEMA) were prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization. The polymers were characterized in terms of molecular weights, polydispersity indices (ranging between 1.12 and 1.23) and compositions by size exclusion chromatography and 1H NMR spectroscopy, respectively. The preparation of the block copolymers was accomplished following a two‐step methodology: First, well‐defined LauMA homopolymers were prepared by RAFT using cumyl dithiobenzoate as the chain transfer agent (CTA). Kinetic studies revealed that the polymerization of LauMA followed first‐order kinetics demonstrating the “livingness” of the RAFT process. The pLauMAs were subsequently used as macro‐CTA for the polymerization of AEMA. The glass transition (Tg) and decomposition temperatures (ranging between 200 and 300 °C) of the copolymers were determined using differential scanning calorimetry and thermal gravimetric analysis, respectively. The Tgs of the LauMA homopolymers were found to be around ?53 °C. Block copolymers exhibited two Tgs suggesting microphase separation in the bulk whereas the statistical copolymer presented a single Tg as expected. Furthermore, the micellization behavior of pLauMA‐b‐pAEMA block copolymers was investigated in n‐hexane, a selective solvent for the LauMA block, using dynamic light scattering. pLauMA‐b‐pAEMA block copolymers formed spherical micelles in dilute hexane solutions with hydrodynamic diameters ranging between 30 and 50 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5442–5451, 2008  相似文献   

6.
Nanoscale poly(methyl methacrylate) (PMMA) particles were prepared by modified microemulsion polymerization. Different from particles made by traditional microemulsion polymerization, the particles prepared by modified microemulsion polymerization were multichain systems. PMMA samples, whether prepared by the traditional procedure or the modified procedure, had glass-transition temperatures (Tg's) greater than 120 °C and were rich in syndiotactic content (55–61% rr). After the samples were dissolved in CHCl3, there were decreases in the Tg values for the polymers prepared by the traditional procedure and those prepared by the modified process. However, a more evident Tg decrease was observed in the former than in the latter; still, for both, Tg was greater than 120 °C. Polarizing optical microscopy and wide-angle X-ray diffraction indicated that some ordered regions formed in the particles prepared by modified microemulsion polymerization. The addition of a chain-transfer agent resulted in a decrease in both the syndiotacticity and Tg through decreasing polymer molecular weight. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 733–741, 2004  相似文献   

7.
Homopolymers of vinylruthenocene and its copolymers with methyl acrylate, styrene, and n-vinylpyrrolidinone have been prepared by free-radical polymerization. No evidence for the electron transfer termination mechanism postulated for polymerization of vinylferrocene was observed. Yields of soluble polymers were 40–90% with M w (4–25) × 103 and M w/M n = 3.0–13.2. TGA analysis showed little weight loss up to 300°C but rapid decomposition above 300°C. Polyvinylruthenocene is a highly brittle material with Tg above 250°C. Torsional braid analysis of the copolymer samples showed Tg in the range 90–130°C which in some samples increased upon cooling and reheating. Several samples showed weak thermal transitions occurring prior to or following Tg. The rise in Tg upon cooling and reheating is indicative of possible decomposition, crosslinking, or realignment of the polymer chains.  相似文献   

8.
Nylon‐6‐b‐polyimide‐b‐nylon‐6 copolymers were prepared by first synthesizing a series of imide oligomers end‐capped with phenyl 4‐aminobenzoate. The oligomers were then used to activate the anionic polymerization of molten ϵ‐caprolactam. In the block copolymer syntheses, the phenyl ester groups reacted quickly with caprolactam anions at 120 °C to generate N‐acyllactam moieties, which activated the anionic polymerization. In essence, nylon‐6 chains grew from the oligomer chain ends. All of the block copolymers had higher moduli and tensile strengths than those of nylon‐6. However, their elongations at break were much lower. The thermal stability, chemical resistance, moisture resistance, and impact strength were dramatically increased by the incorporation of only 5 wt % polyimide in the block copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4247–4257, 2000  相似文献   

9.
Copolymers of nylon 266 and nylon 66 were prepared by interfacial polymerization of N-glycyl hexanediamine and hexanediamine with adipoyl chloride. According to the results of intrinsic viscosity measurements and GPC analysis, the molecular weights of the copolymers were relatively high. The structure of the copolymers was confirmed by FTIR, and the compositions were determined by 1H-NMR spectroscopy. The copolymers have similar solubility features as nylon 66. Both melting and glass transition temperatures showed a minimum at around 20–30% nylon 66 content. The copolymers are semicrystalline. Copolymers with lower Tm could be melt-spun into fibers without appreciable thermal degradation. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Copolymerizations of hexafluoroisobutylene (HFIB) with vinyl pentafluorobenzoate (VPFB) and vinyl trifluoroacetate (VTFA) were carried out in bulk using perfluorodibenzoyl peroxide as the radical initiator. The copolymers obtained were characterized by proton and fluorine NMR spectroscopy. The monomer reactivity ratios in the polymerization of HFIB with VPFB were r1 (HFIB) = 0, r2 (VPFB) = 0.373, and r1r2 = 0. The results indicated that these copolymers have alternating structures. Similarly, the copolymers of HFIB and VTFA also showed alternating structures. The films of HFIB‐co‐VPFB were prepared by casting THF solution of polymers. Films obtained were flexible and transparent. The refractive indices of copolymers were 1.4549, 1.4490, and 1.4438 at 532, 633, and 839 nm, respectively. The average Tgs of HFIB‐co‐VTFA and HFIB‐co‐VPFB were 52 and 71 °C, respectively. From these results, the Tg of the hypothetical HFIB homopolymer is postulated to be in between 70 and 90 °C, which may be useful in the assessment of Tgs of HFIB copolymers with other vinyl monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
This research was focused on the design and execution of new synthetic routes to low‐temperature‐curable poly(silarylene–siloxane)polyimides. The synthesis of individual oligoimide and silarylene–siloxane blocks was followed by hydrosilylation polymerization to produce crosslinked copolymers. The silarylene–siloxane and polyimide blocks were structurally characterized by IR and 1H NMR spectroscopy and size exclusion chromatography. The high‐temperature resistance of the copolymers was evaluated through the measurement of heat distortion temperatures (THD's) via thermomechanical analysis and by the determination of the weight loss at elevated temperatures via thermogravimetric analysis. Glass‐transition temperatures (Tg's) of the silarylene–siloxane segments were measured by differential scanning calorimetry. Hydrosilylation curing was conducted at 60 °C in the presence of chloroplatinic acid (H2PtCl6). The copolymers displayed both high‐temperature resistance and low‐temperature flexibility. We observed Tg of the silarylene–siloxane segment as low as ?77 °C and THD of the polyimide segment as high as 323 °C. The influence of various oligoimide molecular weights on the properties of copolymers containing the same silarylene–siloxane was examined. The effect of various silarylene–siloxane molecular weights on the properties of copolymers containing the same oligoimide was also examined. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4922–4932, 2005  相似文献   

12.
Novel cyclic olefin polymers (COPs) with excellent transparency and high glass‐transition temperature (Tg) synthesized from bulky norbornene derivative, exo‐1,4,4a,9,9a,10‐hexahydro‐9,10(1',2')‐benzeno‐l,4‐methanoanthracene (HBMN), and cis‐cyclooctene (COE) by ring‐opening metathesis copolymerization utilizing the “first‐generation Grubbs” catalyst, RuCl2(PCy3)2(CHPh), and subsequent hydrogenation was reported herein. To get amorphous copolymers, it was of great importance to control the feed ratios and the polymerization time for gradient copolymerization. All these copolymers showed very high Tgs (141.1–201.2 °C), which varied with the content of HBMN. The films of the gradient copolymers with only one Tg were highly transparent. On the contrary, all the block copolymers synthesized through sequential addition showed two thermal transition temperatures, Tg and melt temperature (Tm), and the films of these block copolymers were opaque. The mechanical performances of the COPs were also investigated. It is the first report that transparent COP could be prepared from bulky norbornene derivative and monocyclic olefin. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3240–3249  相似文献   

13.
ABCBA‐type pentablock copolymers of methyl methacrylate, styrene, and isobutylene (IB) were prepared by the cationic polymerization of IB in the presence of the α,ω‐dichloro‐PS‐b‐PMMA‐b‐PS triblock copolymer [where PS is polystyrene and PMMA is poly(methyl methacrylate)] as a macroinitiator in conjunction with diethylaluminum chloride (Et2AlCl) as a coinitiator. The macroinitiator was prepared by a two‐step copper‐based atom transfer radical polymerization (ATRP). The reaction temperature, ?78 or ?25 °C, significantly affected the IB content in the resulting copolymers; a higher content was obtained at ?78 °C. The formation of the PIB‐b‐PS‐b‐PMMA‐b‐PS‐b‐PIB copolymers (where PIB is polyisobutylene), prepared at ?25 (20.3 mol % IB) or ?78 °C (61.3 mol % IB; rubbery material), with relatively narrow molecular weight distributions provided direct evidence of the presence of labile chlorine atoms at both ends of the macroinitiator capable of initiation of cationic polymerization of IB. One glass‐transition temperature (Tg), 104.5 °C, was observed for the aforementioned triblock copolymer, and the pentablock copolymer containing 61.3 mol % IB showed two well‐defined Tg's: ?73.0 °C for PIB and 95.6 °C for the PS–PMMA blocks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3823–3830, 2005  相似文献   

14.
New strategies for the synthesis of perfectly alternating segmented polyimide-polydimethyl siloxane copolymers were developed by utilizing a transimidization method. Imide oligomers endcapped with 2-aminopyrimidine were reacted with aminopropyl terminated (dimethyl siloxane) oligomers to afford perfectly alternating segmented imide siloxane copolymers. The polymerization was conducted in solvents such as chlorobenzene and chlorofrom. High molecular weight, fully imidized perfectly alternating segmented imide siloxane copolymers were obtained within 2 h at temperatures of 60-110°C. The mechanism of the reaction was further elucidated via model compounds and NMR characterization. The block copolymers exhibited two Tgs due to the microphase separation of the polyimide and polysiloxane phases. The Tg of the polyimide phase was a function of the length of the polyimide block. However, partial phase mixing was also evident from the DSC results on the imide siloxane copolymers prepared with low molecular weight polyimide segments. Thermooxidative stability and tensile properties of the perfectly alternating segmented imide siloxane copolymers were found to be principally dependent on the amount of poly (dimethyl siloxane) incorporated in the copolymer and did not correlate with the poly (dimethyl siloxane) or polyimide block lengths. The stress-strain behavior of both solvent cast films or molded films is also reported. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Segmented block copolymers of polysulphone with monodisperse amide segments were synthesized by a melt and a solution polymerization method. Both triblock and multiblock copolymers were prepared. The length of the difunctional polysulphone was varied from 2000 to 20,000 g/mol. The monodisperse amide segment was the tetra‐amide T6T6T based on terephthalic acid (T) and hexamethylene diamine (6) units. The main goal of this work was to study if the high Tg amorphous polysulphone could be modified to a high Tg semi‐crystalline PSU‐T6T6T copolymer. The copolymers were characterized by viscosity measurements, NMR, FTIR, MALDI‐TOF, DSC, and DMA. Depending on the amide concentration in the copolymers the T6T6T melting temperatures ranged between 220 and 270 °C and thus the crystallization window was small 50–100 °C. From the FTIR results, it was revealed that the crystallinity of the T6T6T segments in the copolymer could be very high, up to 92–97%. The T6T6T has crystallized out into nanoribbons with a high aspect ratio. These high Tg semi‐crystalline copolymers had a high dimensional and solvent resistance. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 63–73, 2010  相似文献   

16.
Diphenylethylene (DPE) is a monomer which has attracted significant interest from academia and industry both in terms of copolymerization kinetics and for the potential to extend and tune the range of glass transition temperatures accessible for DPE‐containing copolymers. DPE can undergo (co)polymerization with a variety of other monomers by living anionic polymerization but is incapable of forming a homopolymer due to steric hindrance. DPE, being a sterically bulky monomer, results in dramatic increases in the glass transition temperature (Tg) of resulting copolymers, with a perfectly alternating copolymer of styrene and DPE having a Tg of ~180 °C. Herein we report for the first time, the outcome of the statistical terpolymerization of butadiene, styrene, and DPE—a one‐pot, one‐shot, commercially scalable reaction using monomers of wide industrial importance. This extremely facile approach produces copolymers with a block‐like structure, which undergo microphase separation, possess a high Tg glassy “block” and are virtually indistinguishable from analogous block terpolymers made by the traditional sequential addition of monomers approach. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 382–394  相似文献   

17.
Poly(2‐propyl‐oxazoline)s can be prepared by living cationic ring‐opening polymerization of 2‐oxazolines and represent an emerging class of biocompatible polymers exhibiting a lower critical solution temperature in aqueous solution close to body temperature. However, their usability is limited by the irreversibility of the transition due to isothermal crystallization in case of poly(2‐isopropyl‐2‐oxazoline) and the rather low glass transition temperatures (Tg < 45 °C) of poly(2‐n‐propyl‐2‐oxazoline)‐based polymers. The copolymerization of 2‐cyclopropyl‐2‐oxazoline and 2‐ethyl‐2‐oxazoline presented herein yields gradient copolymers whose cloud point temperatures can be accurately tuned over a broad temperature range by simple variation of the composition. Surprisingly, all copolymers reveal lower Tgs than the corresponding homopolymers ascribed to suppression of interchain interactions. However, it is noteworthy that the copolymers still have Tgs > 45 °C, enabling convenient storage in the fridge for future biomedical formulations. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3118–3122  相似文献   

18.
The synthesis of a series of novel cyano-containing copolymers is described. Alternating copolymers of acrylonitrile with vinyl esters are obtained by increasing the electrophilic character of the nitrile monomers by complexation with zinc chloride. Copolymers of methyl and ethyl α-cyanoacrylates with vinyl esters are prepared using radical initiators in the presence of 7% acetic acid as inhibitor for anionic polymerization. The copolymers of methyl α-cyanoacrylate with the vinyl esters have Tg's above 140°C. Methyl vinylidene cyanide (MVCN) copolymerizes spontaneously with para-substituted styrenes to yield copolymers with high inherent viscosities and high Tg (160°C) and the copolymer of MVCN with vinyl acetate is also synthesized. The pyroelectric constants p for these polymers were measured and the values of p for the copolymers of vinyl acetate with methyl β,β-dicyanoacrylate, methyl α-cyanoacrylate, or MVCN were in the same range as the well-studied vinylidene cyanide/vinyl acetate copolymer. A higher concentration of dipoles generally results in higher Tg's and higher pyroelectric coefficients. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
Polyimide copolymers containing 2,2′‐bipyridine were synthesized and characterized. The glass‐transition temperatures (Tg's) of the polymers ranged from 260 to 300 °C. In contrast to most known organic chromophore‐containing polyimides, the polyimide copolymers in this study showed elevated Tg's (270–320 °C) after coordination with nickel malenonitriledithiolate inorganic chromophores. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 498–503, 2000  相似文献   

20.
A series of new poly(imide‐hydrazide)s and poly(amide‐imide‐hydrazide)s were obtained by the direct polycondensation of N‐[p‐(or m‐)carboxyphenyl]trimellitimide (p‐ or m‐CPTMI) with terephthalic dihydrazide (TPH), isophthalic dihydrazide (IPH), and p‐aminobenzhydrazide (p‐ABH) by means of diphenyl phosphite and pyridine in the N‐methyl‐2‐pyrrolidone (NMP) solutions containing dissolved CaCl2. The resulting hydrazide‐containing polymers exhibited inherent viscosities in the 0.15–0.96 dL/g range. Except for that derived from p‐CPTMI with TPH or p‐ABH, the other hydrazide copolymers were readily soluble in polar solvents such as NMP and dimethyl sulfoxide (DMSO). As evidenced by X‐ray diffraction patterns, the hydrazide copolymer obtained from TPH showed a moderate level of crystallinity, whereas the others were amorphous in nature. Most of the amorphous hydrazide copolymers formed flexible and tough films by solvent casting. The amorphous hydrazide copolymers had glass‐transition temperatures (Tg) between 187 and 233 °C. All hydrazide copolymers could be thermally converted into the corresponding oxadiazole copolymers approximately in the region of 250–400 °C, as evidenced by the DSC thermograms. The oxadiazole copolymers showed a significantly decreased solubility when compared to their respective hydrazide precursors. They exhibited Tg's of 264–302 °C and did not show dramatic weight loss before 400 °C in air or nitrogen. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1599–1608, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号