首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time-dependent variational principle is used to calculate the frequency-dependent dipole polarizabilities of 2p open-shell atomic systems. A general theory is built up to include frequency-dependent perturbations using the Roothaan–Hartree–Fock (HFR) formalism. The excitation energies corresponding to the low-lying excited states of the system are obtained from the poles of the dynamic polarizability values. A fairly accurate knowledge of transition oscillator strengths is also obtained from a knowledge of the polarizability values near the poles. The excitation energies and oscillator strengths are compared with available data.  相似文献   

2.
The first order Hartree–Fock equations of the 1s2p3s 4P0 state of the three-electron atomic systems have been solved exactly. These solutions are used to evaluate Hartree–Fock energy up to third order with high accuracy. The third order Hartree–Fock energies for Li to Ne7+ are compared with those derived from experiment and other theoretical calculations.  相似文献   

3.
Frequency-dependent multipole polarizabilities of the He sequence have been calculated from a hydrodynamic model of quantum mechanics and using an independent-particle model Hamiltonian. Our present scheme is parallel to the uncoupled Hartree–Fock approximation so our values of polarizabilities, multipole transition energies and dispersion force coefficients between the He? He pair are comparable with earlier works using the uncoupled Hartree–Fock approximation.  相似文献   

4.
Ab initio all-electron fully relativistic Dirac–Fock self-consistent field and Dirac–Fock–Breit calculations are reported for the XeF4 molecule at various internuclear distances assuming the experimental D4h geometry with our recently developed relativistic universal Gaussian basis set. The nonrelativistic limit Hartree–Fock calculations were also performed for XeF4 at various internuclear distances. The calculated relativistic correction to the total energy of molecule at the Dirac–Fock level is ~ ?5856 eV, whereas the magnetic part of the Breit correction to the electron-electron interaction is calculated as ~ 177 eV. The electron correlation effects were included in the nonrelativistic Hartree–Fock calculations using the second-order Møller-Plesset (MP 2) theory, and the calculated correlation energy for XeF4 is ?71 eV. The basis-set superposition error (BSSE ) was estimated by using the counterpoise method for Xe and F. The inclusion of both the relativistic and electron correlation effects in the calculated total energies of F, Xe, and XeF4 predicts the Xe—F bond length and dissociation energy of XeF4 as 1.952 Å and 5.59 eV, respectively, which are in excellent agreement with the experimental values of 1.953 Å and 5.69 eV, respectively, for XeF4. The contribution of the electron correlation and relativistic effects to the dissociation energy of XeF4 is 8.11 and 0.05 eV, respectively. The Breit interaction, however, contributes only 0.02 eV to the dissociation energy of XeF4. Electron correlation is most significant for the prediction of an accurate value of dissociation energy, whereas relativistic effects are very important for the prediction of spin-orbital splitting as well as the energies of the orbitals, especially the inner orbitals of XeF4. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Ground-state energies of He, Be, and Ne isoelectronic series have been calculated. The Dirac–Hartree–Fock energy values have been corrected by adding Breit, vacuum polarization, self-energy, nuclear mass, and electron correlation corrections. The resulting energies are compared with the experimental values. As a result, an estimate of the correlation-relativistic cross-term energy is obtained. The effect, for large-Z atoms, proves to be quite substantial.  相似文献   

6.
The K shell intensity ratios Kβ/Kα for 59 elements in the atomic region 16⩽Z⩽92 have been measured at excitation energies of 5.9, 59.5 and 123.6 keV. K X-rays emitted by samples have been counted by a Si(Li) detector with resolution 160 eV at 5.9 keV. The measured values were compared with the theoretical values calculated using Scofield's tables based on the Hartree–Slater and Hartree–Fock theories and available experimental values. Reasonable agreement is typically obtained between present and theoretical values.  相似文献   

7.
By examining the exact operator Oλ+ which is the solution of the equations of motion-Green's function method, we rederive expressions for non-reference (usually excited) state properties. Hence, additional useful information such as state expectation values, oscillator strengths, and frequency dependent and independent polarizabilities may be easily obtained from an equation of motion-Green's function calculation. With the multiconfigurational random phase approximation (MCRPA), which is equivalent to the multiconfigurational time dependent Hartree-Fock (MCTDHF), excitation energies, oscillator strengths, and excitation operators from the ground states are obtained for the low-lying valence (under 10 eV above the ground state) states of CO at the experimental ground state equilibrium geometry. We apply these techniques to obtain the excited state dipole moments for and oscillator strengths between the A 1Π, a 3Π, a′ 3Σ+, and d 3Δ states of CO and compare our results to other calculations and experiments.  相似文献   

8.
A series of six radical cations of the type (D L D)+ was investigated at the ab initio unrestricted Hartree–Fock level. One localized and one delocalized conformation were systematically searched by full geometry optimization. At both nuclear arrangements, mostly found as being minima in the symmetry‐restrained Hartree–Fock framework, excitation energies were calculated through the expansion of the wave function on single electronic excitations of the Hartree–Fock fundamental determinant and at the unrestricted Hartree–Fock or at the multiconfigurational self consistent field levels. Few calculations were also performed by taking into account some part of the electronic correlation. Except for N,N,N′,N′‐tetramethyl p‐phenylenediamine, all the studied compounds are localized stable cations, at the symmetry‐restrained Hartree–Fock level. However, the reoptimization of their wave function changes this observation since only three of them seem to conserve a localized stable conformation. Most of the studied systems are characterized by one or two excited electronic states very close to the fundamental one and should thus present an unresolved broadened first absorption band in the near‐infrared region. These features are in agreement with the available experimental data. Strong Hartree–Fock instabilities are found for the delocalized structure and put in relation with the existence of the large nonadiabatic coupling in this conformational region. The solvent influence is discussed in the Onsager dipolar reaction field framework. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 552–573, 2000  相似文献   

9.
A new formalism and algorithm is developed for solving the general-order time-dependent Hartree–Fock (TDHF) problem. It is shown that for any order a generalization of the TDHF equations can be derived where all lower-order solutions constitute a constant term. This makes it very easy to obtain high-order solutions. As the space required for the mapping of density matrices to Fock matrices in a problem of a giver order is largely reduced, we can perform the most time-consuming steps within the core memory of the machine and easily manipulate vector products via optimum routines. The second hyperpolarizability γ is obtained from the secondorder TDHF solution via a 2n rule. The formalism also allows for expressing all terms in the equation diagrammatically, which provides additional physical insight and a more systematic evaluation of terms. To illustrate the method, TDHF results are presented for trans-butadiene and carbon monoxide for several optical processes, including correlation corrections to their static hyperpolarizabilities obtained via coupled cluster (CCSD) and many-body perturbation theory. The hybrid TDHF/CCSD method provides excellent agreement with the DC–SHG experiments (χ||(2) = 11.4 x 10?32 esu/mol compared to 12.9 ± 11.4 × 10?32 esu/mol and χ||(3) = 149 compared to 144 ± 4 × 10?39 esu/mol).  相似文献   

10.
An extended average energy (EAE) calculation of the 2s2 and 2p21S resonance state energies of two-electron atoms is carried out. We take the bare-nucleus hamiltonian as the initial approximation and treat the zeroth-order degeneracy by van Vleck perturbation theory, For both H? and He the lower state energies agree quite well with experiment while the upper state is about 1–2 eV too high. Our remits for He are comparable in accuracy to those obtained by the 1/Z Hartree—Fock perturbation method. A brief concluding discussion of ways to improve the simple EAE technique is presented.  相似文献   

11.
The correlation effect for three- and foru-electron atomic systems has been taken into account by modifying the potentials of the electron interactions appearing in the Hartree–Fock equations. The correlation energies obtained for Li, Be+, B2+, Li?, Be and B+ differ by less than 25 percent from the exact values.  相似文献   

12.
The total energies and one-electron energies for first- and second-row atoms were calculated by using the Hartree–Fock and the Hartree–Fock-Slater Hamiltonian with Xα orbitals, uiexp); α was parametrized from EHFS exp) = Eexp. The EHF exp) total energies are always higher than the Hartree–Fock energies for the atoms. The relation of the calculated ionization potential to the experimental ionization potential depends on the α used to define ui(α), αexp, or αHF.  相似文献   

13.
Ab initio accurate all-electron relativistic molecular orbital Dirac–Fock self-consistent field calculations are reported for the linear symmetric XeF2 molecule at various internuclear distances with our recently developed relativistic universal Gaussian basis set. The nonrelativistic limit Hartree–Fock calculations were also performed for XeF2 at various internuclear distances. The relativistic correction to the electronic energy of XeF2 was calculated as ~ ?215 hartrees (?5850 eV) by using the Dirac–Fock method. The dominant magnetic part of the Breit interaction correction to the nonrelativistic interelectron Coulomb repulsion was included in our calculations by both the Dirac–Fock–Breit self-consistent field and perturbation methods. The calculated Breit correction is ~6.5 hartrees (177 eV) for XeF2. The relativistic Dirac–Fock as well as the nonrelativistic HF wave functions predict XeF2 to be unbound, due to neglect of electron correlation effects. These effects were incorporated for XeF2 by using various ab initio post Hartree–Fock methods. The calculated dissociation energy obtained using the MP 2(full) method with our extensive basis set of 313 primitive Gaussians that included d and f polarization functions on Xe and F is 2.77 eV, whereas the experimental dissociation energy is 2.78 eV. The calculated correlation energy is ~ ?2 hartrees (?54 eV) at the predicted internuclear distance of 1.986 Å, which is in excellent agreement with the experimental Xe—F distance of 1.979 Å in XeF2. In summary, electron correlation effects must be included in accurate ab initio calculations since it has been shown here that their inclusion is crucial for obtaining theoretical dissociation energy (De) close to experimental value for XeF2. Furthermore, relativistic effects have been shown to make an extremely significant contribution to the total energy and orbital binding energies of XeF2. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Hartree–Fock–Roothaan studies are reported for low-lying electronic states of metallic beryllium as modeled by a moiety of 135 beryllium atoms. The system corresponds to 16 coordination shells of a central Be with internuclear separations derived from the lattice constants of the bulk metal. The calculations become tractable by use of the full D3h symmetry of the system at both the integrals and self-consistent-field stages and by employing ab initio effective potentials for the 1s electrons of each beryllium atom. Ionization potentials, binding energies, orbital energies, electric field gradients, nuclear-electrostatic potentials, diamagnetic shielding constants, second moments, and Mulliken populations are calculated for selected electronic states. The calculated ionization potential for the lowest state agrees to within 10% of the experimental bulk work function. A density-of-states analysis for that state is reported and compared with band structure calculations.  相似文献   

15.
The double-zeta atomic functions are characterized by the nuclear charge z of the two-electron atomic system. The Hartree–Fock total energies and the corresponding orbital energies are calculated using various atomic wave functions for the helium isoelectronic sequence. The expectation values rn of various wave functions are also examined. It is found that the accuracy of our one-parameter double-zeta functions corresponds to the accuracy of the usual five-parameter double-zeta functions.  相似文献   

16.
The n = 2 effective valence shell hamiltonian, Hv, of carbon is evaluated through second order using 3P Hartree—Fock orbitals (5s4p) with added d functions to provide results within a few percent of the spd convergence limits. The calculated Hv is employed to evaluate the n = 2 valence states of C, C?, C+, C2+ and C3+ with an average deviation of the 21 excitation energies, ionization potentials and electron affinity from experimental values of 0.32 eV. Three-electron parts of Hv contribute substantially to a number of these excitation energies.  相似文献   

17.
The nitrogen protonation energies of the imino bases HN?CHR, where R is H, CH3, NH2, OH, and F, have been evaluated to determine the dependence of absolute and relative protonation energies on geometry, basis set, and correlation effects. Reliable absolute protonation energies require a basis set larger than a split-valence plus polarization basis, the inclusion of correlation, and optimized geometries of at least Hartree–Fock 4-31G quality. Consistent relative protonation energies can be obtained at the Hartree–Fock level with smaller basis sets. Extending the split-valence basis set by the addition of polarization functions on all atoms decreases the computed absolute Hartree–Fock nitrogen protonation energies of the imino bases HN?CHR except when R is F, but increases the oxygen protonation energies of the carbonyl bases O?CHR.  相似文献   

18.
We performed a comprehensive study of the size‐, shape‐, and composition‐dependent polarizabilities of SimCn (m, n = 1–4) clusters on the basis of the density‐functional‐based coupled perturbed Hartree–Fock calculations. We found better correlations between the polarizabilities and both the binding energies (Eb) and change in charge distribution (Δq) than the energy gaps. The α values exhibit overall decreasing and increasing trends with increases in the Eb and Δq values, respectively. For isomers with the same Eb values and different polarizabilities, Δq can well explain the difference in polarizabilities. The π‐electron delocalization effect is the best factor for understanding the shape‐dependence. For a given m/n value, the linear clusters have an obviously larger polarizability than both the prolate and compact clusters, irrespective of the cluster size. We fit a quantitative expression [α = A ? (A ? B) × exp(?k(m/n))] to describe the composition‐dependent polarizabilities. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Accurate Gaussian basis sets (18s for Li and Be and 20s11p for the atoms from B to Ne) for the first‐row atoms, generated with an improved generator coordinate Hartree–Fock method, were contracted and enriched with polarization functions. These basis sets were tested for B2, C2, BeO, CN, LiF, N2, CO, BF, NO+, O2, and F2. At the Hartree–Fock (HP), second‐order Møller–Plesset (MP2), fourth‐order Møller–Plesset (MP4), and density functional theory (DFT) levels, the dipole moments, bond lengths, and harmonic vibrational frequencies were studied, and at the MP2, MP4, and DFT levels, the dissociation energies were evaluated and compared with the corresponding experimental values and with values obtained using other contracted Gaussian basis sets and numerical HF calculations. For all diatomic molecules studied, the differences between our total energies, obtained with the largest contracted basis set [6s5p3d1f], and those calculated with the numerical HF methods were always less than 3.2 mhartree. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 15–23, 2000  相似文献   

20.
Ab Initio study of the ground and excited state polarizabilities of thiophene, fulvene, and cyclopentadiene based conducting oligomers and their cyano derivatives have been performed using the restricted Hartree–Fock (RHF) and the configuration interaction singles (CIS) approaches, respectively, with 3‐21G* basis set. For comparison purposes, for some small oligomers (monomers and dimers), higher basis sets (6‐31G*, 6‐31+G*, aug‐cc‐pVTZ) were also employed in the computations of polarizabilities. The trends in polarizability as a function of oligomer length were investigated. For all systems, the RHF polarizability increases as n1.2–1.3 as n gets larger and the CIS polarizability increases as n1.4–1.6 for n less than seven or eight rings and then increases approximately linearly with n for larger n. For the thiophene based systems the dependence of the polarizability on bond length alternation (BLA) along the backbone of the oligomers was also investigated using the RHF, density functional (DFT), and CIS theories (with 3‐21G* basis set). For thiophene dimer, we also performed RHF/aug‐cc‐pVTZ calculations of polarizabilities versus BLA. We found that the polarizability is largest when BLA is near zero (for both ground and excited states), which correlates with the lowest excitation energy. Comparison with experimental results has been made where possible. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1983–1995, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号