首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
The penetration of free hollow thin-walled turbulent water jets into water is considered. These jets are generated in a conical jet aerator whose apex angle is 60°. The periods of steady regular self-oscillations appearing during the process of penetration are studied experimentally. A dependence of these periods on the annular nozzle gap width δ, 0.07 ≤ δ ≤ 0.12 cm, is analyzed for the jet discharge range 160 ≤ Q ≤ 550 cm3/s when the height H of the annular nozzle above the water surface belongs to the range 1 ≤ H ≤ 28 cm.  相似文献   

3.
Experimental observations and analysis are presented for the formation and atomization of the fluid sheet created by obliquely colliding jets of viscoelastic fluids. Solutions of mono-disperse polystyrene (PS) in diethylphthalate and of poly-disperse polyethylene oxide (PEO) in glycerol/water mixtures were used to investigate the effects of fluid elasticity on the break-up patterns generated by the impact of two jets ejected from nozzles with an internal diameter of 0.85 mm. Various regimes of behaviour were identified which depend on the jet speed. The structures observed for these elastic fluids differ somewhat from those previously reported for Newtonian viscous fluids, and also show different behaviours depending on the degree of viscoelasticity. This study focuses on the periodic atomization, the so-called fishbone pattern, which occurs when the impinging jets form a liquid sheet which breaks up into a regular succession of ligaments and droplets. High-speed flash photography reveals that low concentrations of polymers significantly affect the evolution of the sheet and its fragmentation, the shapes of the ligaments, and the final drop sizes. The maximum fishbone angle is defined and shown to be a useful tool to describe the variation of the atomization pattern with polymer concentration. For the PS solutions the variation of maximum fishbone angle with reduced polymer concentration (c/c*) follows a single master curve, but although the same is true for PEO with high molecular weights, the curves remain separate for low molecular weights. Observation of the fishbone patterns formed by the oblique impact of jets may provide a useful tool to observe and characterize inter-chain interaction in high speed extensional flow of polymer solutions.  相似文献   

4.
O’Neill  P.  Soria  J.  Honnery  D. 《Experiments in fluids》2004,36(3):473-483
Multigrid cross-correlation digital particle image velocimetry (MCCDPIV) is used to investigate the stability and structure of low Reynolds number axisymmetric jets. The in-plane velocities, out-of-plane vorticity and some of the components of the Reynolds stress tensor are measured. Two Reynolds numbers based on the orifice outlet diameter are examined (680 and 1,030) at two different positions: one close to the orifice, ranging from 2D 0 to 5D 0 (D 0 is the orifice diameter); and the other further from the orifice, ranging from 10D 0 to 14.4D 0. The results show that the lower Reynolds number jet (Re=680) is marginally unstable in the near-orifice region and is best described as laminar. Further downstream some intermittent structures are observed in the jet, and the growth in integrated turbulent kinetic energy with axial position indicates that the jet is also unstable in this region. For the higher Reynolds number jet (Re=1,030) the increasing size and intensity of vortical structures in the jet in the near-orifice region observed from the MCCDPIV data and the growth in integrated turbulent kinetic energy indicate that the jet is unstable. Further downstream this jet is best described as transitional or turbulent. From flow visualisation images in the near-orifice region it seems that, for both Reynolds numbers, shear layer roll-up occurs when the jet exits the orifice and enters the quiescent fluid in the tank, resulting in vortical structures that appear to grow as the jet proceeds. This is indicative of instability in both cases and is consistent with previous flow visualisation studies of low Reynolds number round jets. Discrepancies observed between the flow visualisation results and the MCCDPIV data is addressed. On the basis of flow visualisation results it is generally assumed that round jets are unstable at very low Reynolds number, however the present work shows that this assertion may be incorrect.  相似文献   

5.
A planar and instantaneous visualization study of high-speed gas jets and their airblast sprays was performed to qualitatively examine the different atomization performances of different gas nozzles. For the visualization of high-speed gas jets (with no liquid injected), Nd:YAG pulsed laser sheets imaged the clustered vapor molecules in the Rayleigh range (d?λ), condensed from the natural humidity during the isentropic gas expansion through a nozzle. This method visualized both underexpanded sonic gas jets from a converging nozzle (SN-Type) and overexpanded supersonic gas jets from a converging-diverging nozzle (CD-Type). When liquid is cross-injected, the same laser sheet images the spray droplets of relatively large sizes (d?λ). The present visualization results show that the SN-Type nozzle develops a wider spray than the CD-Type nozzle, quite probably because the SN-Type nozzle has a wider gas jet (in the absence of liquid) than the CD-Type. Also, the wider spray of the SN-Type nozzle lowers the probability of droplet coalescence and generates finer sprays compared to the CD-Type nozzle. These visualization results qualitatively agree with the previous quantitative finding of the different atomization characteristics of the two types of nozzles (Park et al. 1996).  相似文献   

6.
Round air jet development downstream from an abrupt contraction coupled to a uniform circular tube extension with length to diameter ratio L/D?=?1.2 and L/D?=?53.2 is studied experimentally. Smoke visualisation and systematic hot film velocity measurements are performed for low to moderate Reynolds numbers 1130?<?Re b ?<?11320. Mean and turbulent velocity profiles are quantified at the tube exit and along the centerline from the tube exit down to 20 times the diameter D. Flow development is seen to be determined by the underlying jet structure at the tube exit which depends on Reynolds number, initial velocity statistics at the tube exit and the presence/absence of coherent structures. It is shown that the tube extension ratio L/D as well as the sharp edged abrupt contraction influence the initial jet structure at the tube exit. For both L/D ratios, the presence of the abrupt contraction results in transitional jet flow in the range 2000?<?Re b ?<?4000 and in flow features associated with forced jets and high Reynolds numbers Re b ?>?104. The tube extension ratio L/D downstream from the abrupt contraction determines the shear layer roll up so that for L/D?=?1.2 flow visualisation suggests the occurrence of toroidal vortices for Re b ?<?4000 whereas helical vortices are associated with the transitional regime for L/D?=?53.2. Found flow features are compared to features reported in literature for smooth contraction nozzles and long pipe flow.  相似文献   

7.
Using the detailed numerical simulation data of primary atomization, the liquid surface instability development that leads to atomization is characterized. The numerical results are compared with a theoretical analysis of liquid–gas layer for a parameter range close to high-speed Diesel jet fuel injection. For intermittent and short-duration Diesel injection, the aerodynamic surface interaction and transient head formation play an important role. The present numerical setting excludes nozzle disturbances to primarily investigate this interfacial instability mechanism and the role of jet head. The first disturbed area is the jet head region, and the generated disturbances are fed into the upstream region through the gas phase. This leads to the viscous boundary layer instability development on the liquid jet core. By temporal tracking of surface pattern development including the phase velocity and stability regime and by the visualization of vortex structures near the boundary layer region, it is suggested that the instability mode is the Tollmien–Schlichting (TS) mode similar to the turbulent transition of solid-wall boundary layer. It is also demonstrated that the jet head and the liquid core play an interacting role, thus the jet head cannot be neglected in Diesel injection. In this study, this type of boundary layer instability has been demonstrated as a possible mechanism of primary atomization, especially for high-speed straight liquid jets. The effect of nozzle turbulence is a challenging but important issue, and it should be examined in the future.  相似文献   

8.
Manipulation of large-scale vortical structures and associated mixing in a methane-air coaxial jet is carried out by using miniature jet actuators installed on the inner surface of the annular nozzle. The periodic radial miniature jet injections are achieved with a rapid-response servo-valve. The spatio-temporal primary jet structures are investigated through phase-locked 2C-PIV (2 Component Particle Image Velocimetry) and stereoscopic-PIV. It is found that intense ring-like vortices are produced perfectly in phase with the periodic miniature jet injections regardless of the valve-driven frequency fv examined. When the Strouhal number Stv, which is defined with fv, is larger than unity, the ring-like vortices are densely formed and thus methane/air mixing is prompted with low periodic fluctuation. The diameter of the vortices becomes small as Stv is increased, so that the transport range of the inner methane and outer air fluids can be controlled by changing Stv. In addition, the evolution of counter-rotating vortex pair is also observed in the cross-sectional plane. These streamwise vortices are directly formed as a result of the radial miniature jet injection, which leads to entrainment of the ambient fluid near the primary jet shear layer, and they also contribute to the mixing enhancement. Moreover, it is demonstrated that coaxial jet flame characteristics such as carbon monoxide (CO) emission and flame holding can be drastically improved under different equivalence ratios by the present jet control scheme.  相似文献   

9.
In this paper we present a numerical model for the coarse-grid simulation of turbulent liquid jet breakup using an Eulerian–Lagrangian coupling. To picture the unresolved droplet formation near the liquid jet interface in the case of coarse grids we considered a theoretical model to describe the unresolved flow instabilities leading to turbulent breakup. These entrained droplets are then represented by an Eulerian–Lagrangian hybrid concept. On the one hand, we used a volume of fluid method (VOF) to characterize the global spreading and the initiation of droplet formation; one the other hand, Lagrangian droplets are released at the liquid–gas interface according to the theoretical model balancing consolidating and disruptive energies. Here, a numerical coupling was required between Eulerian liquid core and Lagrangian droplets using mass and momentum source terms. The presented methodology was tested for different liquid jets in Rayleigh, wind-induced and atomization regimes and validated against literature data. This comparison reveals fairly good qualitative agreement in the cases of jet spreading, jet instability and jet breakup as well as relatively accurate size distribution and Sauter mean diameter (SMD) of the droplets. Furthermore, the model was able to capture the regime transitions from Rayleigh instability to atomization appropriately. Finally, the presented sub-grid model predicts the effect of the gas-phase pressure on the droplet sizes very well.  相似文献   

10.
Generation of hypersonic liquid fuel jets accompanying self-combustion   总被引:2,自引:0,他引:2  
Aerodynamic behavior of pulsed hypersonic light oil jets injected at 2 km/s and 3 km/s is presented. Auto-ignition and combustion of the fuel during the injection process were visualized. The combustion around the disintegrating jet was enhanced by liquid atomization created by the very high injection pressure as well as the interfacial instability of the hypersonic jet. The jets were injected into air at low pressure and also that premixed with helium and air. It was found that the combustion was reduced in both cases despite the higher jet speed and the increased gas pressure. Received 5 November 1998 / Accepted 24 February 1999  相似文献   

11.
In this work, the turbulent mixing of a confined coaxial jet in air is investigated by means of simultaneous particle image velocimetry and planar laser induced fluorescence of the acetone seeded flow injection. The jet is injected into a turbulent duct flow at atmospheric pressure through a 90 ° pipe bend. Measurements are conducted in a small scale windtunnel at constant mass flow rates and three modes of operation: isothermal steady jet injection at a Dean number of 20000 (R e d =32000), pulsed isothermal injection at a Womersley number of 65 and steady injection at elevated jet temperatures of ΔT=50 K and ΔT=100 K. The experiment is aimed at providing statistically converged quantities of velocity, mass fraction, turbulent fluctuations and turbulent mass flux at several downstream locations. Stochastic error convergence over the number of samples is assessed within the outer turbulent shear layer. From 3000 samples the statistical error of time-averaged velocity and mass fraction is below 1 % while the error of Reynolds shear stress and turbulent mass flux components is in the of range 5-6 %. Profiles of axial velocity and turbulence intensity immediately downstream of the bend exit are in good agreement with hot-wire measurements from literature. During pulsed jet injection strong asymmetric growing of shear layer vortices lead to a skewed mass fraction profile in comparison with steady injection. Phase averaging of single shot PLIF-PIV measurements allows to track the asymmetric shear layer vortex evolvement and flow breakdown during a pulsation cycle with a resolution of 10°. Steady injection with increased jet temperature supports mixing downstream from 6 nozzle diameters onward.  相似文献   

12.
Fluidized bed agglomeration is an important and challenging problem for thermal cracking in fluid cokers. A low coker temperature can be problematic because the bitumen is injected into the fluidized bed with a different viscosity, resulting in formation of agglomerates of varying sizes, which slows the cracking reactions. In the present study, the bed material agglomeration process during nozzle injection of multiviscosity liquid was investigated in a fluidized bed operated at different mass ratios of the atomization gas to the liquid jets (GLR = 1%–3.5%) and gas velocities (3.9Umf and 5.9Umf) based on a conductance method using a water–sand system to simulate the hot bitumen–coke system at room temperature. During the tests of liquid-jet dispersion throughout the bed, different agglomeration stages are observed at both gas velocities. The critical amount of tert-butanol in the liquid jets that could lead to severe agglomeration of the bed materials (poor fluidization) at GLR = 1% is about 10 wt% at the low fluidizing gas velocity (3.9Umf) and 18 wt% at the high gas velocity (5.9Umf). This study provides a new approach for on-line monitoring of bed agglomeration during liquid injection to guarantee perfect contact between the atomized liquid and the bed particles.  相似文献   

13.
Coaxial injectors have proven to be advantageous for the injection, atomization and mixing of propellants in cryogenic H2/O2 rocket engines. Thereby, a round liquid oxygen jet is atomized by a fast, coaxial gaseous hydrogen jet. This article summarizes phenomenological studies of coaxial spray generation under a broad variation of influencing parameters including injector design, inflow, and fluid conditions. The experimental investigations, performed using spark light photography and high speed cinematography in a shadow graph setup as main diagnostic means, illuminate the most important processes leading to atomization. These are identified as turbulence in the liquid jet, surface instability, surface wave growth and droplet detachment. Numerical simulations including free surface flow phenomena are a further diagnostic tool to elucidate some atomization particulars. The results of the study are of general importance in the field of liquid atomization.  相似文献   

14.
Experimental data regarding the distribution of the intermittency coefficient of the turbulent flow of an incompressible liquid in the axisymtnetrical wakes behind a sphere or a solid of revolution with an elongation of 8∶1 are presented. The original measurements were carried out at a Reynolds number of Re=UD/v=104 (U) is the velocity of the incident flow, D is the diameter of the middle cross section). The shape of the solid is shown to have a considerable effect on the form of intermittency in the far automodel wake.  相似文献   

15.
Droplet impingement experiments were performed on grooved hydrophobic surfaces with cavity fractions of 0, 80, and 93?% using droplets of water and a 50?%/50?% water/glycerol mixture. The influence of liquid viscosity, cavity fraction, and spreading direction, relative to the surface grooves, is explored qualitatively and quantitatively. The maximum droplet spread diameter, velocity of the rebounding jet, and the time delay between droplet impact and jet emission were characterized for Weber numbers, We, based on droplet impact speed and diameter, up to 500. The unequal shear stresses and contact angles influence the maximum spread diameters in the two primary spread directions. At We?>?100, the ratio of the spread diameter along the direction of the grooves to the spread diameter perpendicular to the grooves increases above unity with increasing We. The maximum droplet spread diameter is compared to recent predictive models, and the data reveal differing behavior for the two fluids considered. The results also reveal the existence of very high relative jet velocities in the range 5????We????15 for water droplets, while such jets were not observed for the more viscous mixture. Further, in the range 115????We????265, the water/glycerol jet formation dynamics are radically different from the water behavior. Most evident is the existence of two-pronged jets, which arise from the anisotropy of the surface and the unequal shear stresses and contact angles that prevail on the surfaces. It is these influences that give rise to differences in the maximum spread diameters in the two primary spread directions. Similar two-pronged jet emission was observed for water over the very narrow range of We from 91 to 96. The issuing jet velocities were also observed to increase with increasing cavity fraction for both fluids and over the entire range of We explored. Lastly, the elapsed time between droplet impact and jet emission decreased with increasing cavity fraction.  相似文献   

16.
高速液体射流流动特性的实验测试方法   总被引:1,自引:0,他引:1  
基于RLPG高压喷射环境建立了射流流动特性的实验测定系统和分析方法.利用这种方法测出高压下喷口的流量系数,得到射流头部贯穿速度及射流核形态.  相似文献   

17.
The injection of a liquid jet into a crossing Mach 6 air flow is investigated. Experiments were conducted on a sharp leading edge flat plate with flush mounted injectors. Water jets were introduced through different nozzle shapes at relevant jet-to-air momentum–flux ratios. Sufficient temporal resolution to capture small scale effects was obtained by high-speed recording, while directional illumination allowed variation in field of view. Shock pattern and flow topology were visualized by Schlieren-technique. Correlations are proposed on relating water jet penetration height and lateral extension with the injection ratio and orifice diameter for circular injector jets. Penetration height and lateral extension are compared for different injector shapes at relevant jet-to-air momentum–flux ratios showing that penetration height and lateral extension decrease and increase, respectively, with injector’s aspect ratio. Probability density function analysis has shown that the mixing of the jet with the crossflow is completed at a distance of x/d j  ~ 40, independent of the momentum–flux ratio. Mean velocity profiles related with the liquid jet have been extracted by means of an ensemble correlation PIV algorithm. Finally, frequency analyses of the jet breakup and fluctuating shock pattern are performed using a Fast Fourier algorithm and characteristic Strouhal numbers of St = 0.18 for the liquid jet breakup and of St = 0.011 for the separation shock fluctuation are obtained.  相似文献   

18.
The near-field shear layer instabilities forming in round transverse jets of variable (reduced) densities relative to the crossflow are investigated through gas-phase experiments. Jets composed of helium and nitrogen mixtures are injected from a converging nozzle mounted flush with an injection wall into air crossflow, allowing the jet-to-crossflow density ratio S to be varied between 1.00, the equidensity case, and 0.14, at constant jet Reynolds number Re j ?=?1,800. Jet-to-crossflow momentum flux ratios J are examined in the range $\infty>J\geq5$ at incremental values of the density ratio S. The results of single-component hotwire measurements in the jet shear layer indicate that a transition to global instability likely occurs as J is brought below approximately 10, and/or as S is brought below approximately 0.45?C0.40. This observation appears to link many previous independent studies of both equidensity transverse jets and low-density free jets, which may become globally unstable under alteration of J and S, respectively. However, the dynamical character of the transition to global instability in the low-density transverse jet displays differences under independent variation of J and S, which may indicate the predominance of different modes.  相似文献   

19.
A comparative study of the length scales and morphology of dissipation fields in turbulent jet flames and non-reacting jets provides a quantitative analysis of the effects of heat release on the fine-scale structure of turbulent mixing. Planar laser Rayleigh scattering is used for highly resolved measurements of the thermal and scalar dissipation in the near fields of CH4/H2/N2 jet flames (Re d  = 15,200 and 22,800) and non-reacting propane jets (Re d  = 7,200–21,700), respectively. Heat release increases the dissipation cutoff length scales in the reaction zone of the flames such that they are significantly larger than the cutoff scales of non-reacting jets with comparable jet exit Reynolds numbers. Fine-scale anisotropy is enhanced in the reaction zone. At x/d = 10, the peaks of the dissipation angle PDFs in the Re d  = 15,200 and 22,800 jet flames exceed those of non-reacting jets with corresponding jet exit Reynolds numbers by factors of 2.3 and 1.8, respectively. Heat release significantly reduces the dissipation layer curvature in the reaction zone and in the low-temperature periphery of the jet flames. These results suggest that the reaction zone shields the outer regions of the jet flame from the highly turbulent flow closer to the jet axis.  相似文献   

20.
Laboratory experiments were carried out to study the effects of sand particles on circular sand–water wall jets. Mean and turbulence characteristics of sand particles in the sand–water wall jets were measured for different sand concentrations co ranging from 0.5% to 2.5%. Effects of sand particle size on the centerline sand velocity of the jets were evaluated for sand size ranging from 0.21 mm to 0.54 mm. Interesting results with the range of measurements are presented in this paper. It was found that the centerline sand velocity of the wall jets with larger particle size were 15% higher than the jets with smaller particle size. Concentration profiles in the vertical direction showed a peak value at x/d = 5 (where x is the longitudinal distance from the nozzle and d is the nozzle diameter) and the sand concentration decreased linearly for x/d > 5. Experimental results showed that the turbulence level enhanced from the nozzle to x/d = 10. For sand–water wall jets with a higher concentration (co = 1.5–2.5%), the turbulence intensity became smaller than the corresponding single-phase wall jets by 34% due to turbulent modulation. A modified logarithmic formulation was introduced to model the longitudinal turbulent intensity at the centerline and along the axis of the jet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号