首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microorganisms producing lipase were isolated from soil and sewage samples and screened for enantioselective resolution of (R,S)-methyl mandelate to (R)-mandelic acid. A strain designated as GXU56 was obtained and identified as Burkholderia sp. Preparing immobilized GXU56 lipase by simple adsorption on octyl sepharose CL-4B, the optimum temperature was shifted from 40 °C (free lipase) to 50 °C (immobilized lipase), and the optimum pH was shifted from 8.0 (free lipase) to 7.2 (immobilized lipase). The immobilized enzyme displayed excellent stability in the pH range of 5.0–8.0, at the temperatures below 50 °C and in organic solvents compared with free enzyme. Enantioselectivity ratio for (R)-mandelic acid (E) was dramatically improved from 29.2 to more than 300 by applying immobilized lipase in the resolution of (R,S)-methyl mandelate. After five cycles of use of immobilized lipase, conversion and enantiomeric excess of (R)-mandelic acid were 34.5% and 98.5%, respectively, with enantioselectivity ratio for (R)-mandelic acid (E) of 230. Thus, octyl-sepharose-immobilized GXU56 lipase can be used as a bio-resolution reagent for producing (R)-mandelic acid.  相似文献   

2.
Cyclodextrin glucanotransferase, produced by Bacillus megaterium, was characterized, and the biochemical properties of the purified enzyme were determined. The substrate specificity of the enzyme was tested with different α-1,4-glucans. Cyclodextrin glucanotransferase displayed maximum activity in the case of soluble starch, with a K m value of 3.4 g/L. The optimal pH and temperature values for the cyclization reaction were 7.2 and 60 °C, respectively. The enzyme was stable at pH 6.0–10.5 and 30 °C. The enzyme activity was activated by Sr2+, Mg2+, Co2+, Mn2+, and Cu2+, and it was inhibited by Zn2+and Ag+. The molecular mass of cyclodextrin glucanotransferase was established to be 73,400 Da by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, 68,200 Da by gel chromatography, and 75,000 Da by mass spectrometry. The monomer form of the enzyme was confirmed by the analysis of the N-terminal amino acid sequence. Cyclodextrin glucanotransferase formed all three types of cyclodextrins, but the predominant product was β-cyclodextrin.  相似文献   

3.
A new flavonoid, kaempferol-3,4′-di-O-α-L-rhamnopyranoside (1), and three known flavonoids (2–4) were isolated from the aerial parts of T. communis L. The structure of the new compound was elucidated on the basis of spectroscopic data. Compounds 1 and 2 showed significant antioxidant activity (IC50 187.151 ± 0.821 μM, and 92.079±0.513 μM, respectively), whereas compounds 3 and 4 showed moderate activity in DPPH free radical scavenging assays. Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 295–297, May–June, 2009.  相似文献   

4.
An extracellular lipase was purified from the fermentation broth of Penicillium expansum PED-03 by DEAE-Sepharose chromatography, followed by sephacryl S-200 chromatography. The enzyme was purified 81.8-fold with 19.8% recovery and a specific activity of 85.94 U/mg. The molecular weight of the homogeneous enzyme was about 28 kDa, determined by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The enzymatic resolution of racemic ibuprofen was carried out by the lipase from P. expansum PED-03, and the conversion reached 46% with excellent enantioselectivity(E > 200 ), which showed a good application potential in the production of optically pure ibuprofen.  相似文献   

5.
Xylanase from Bacillus pumilus strain MK001 was immobilized on different matrices following varied immobilization methods. Entrapment using gelatin (GE) (40.0%), physical adsorption on chitin (CH) (35.0%), ionic binding with Q-sepharose (Q-S) (45.0%), and covalent binding with HP-20 beads (42.0%) showed the maximum xylanase immobilization efficiency. The optimum pH of immobilized xylanase shifted up to 1.0 unit (pH 7.0) as compared to free enzyme (pH 6.0). The immobilized xylanase exhibited higher pH stability (up to 28.0%) in the alkaline pH range (7.0–10.0) as compared to free enzyme. Optimum temperature of immobilized xylanase was observed to be 8 °C higher (68.0 °C) than free enzyme (60.0 °C). The free xylanase retained 50.0% activity, whereas xylanase immobilized on HP-20, Q-S, CH, and GE retained 68.0, 64.0, 58.0, and 57.0% residual activity, respectively, after 3 h of incubation at 80.0 °C. The immobilized xylanase registered marginal increase and decrease in K m and V max values, respectively, as compared to free enzyme. The immobilized xylanase retained up to 70.0% of its initial hydrolysis activity after seven enzyme reaction cycles. The immobilized xylanase was found to produce higher levels of high-quality xylo-oligosaccharides from birchwood xylan, indicating its potential in the nutraceutical industry.  相似文献   

6.
Increasing awareness of the importance of fructooligosaccharides (FOS) as ingredients of functional foods has led to intensive search of new sources of fructosyltransferases (FTase), enzymes responsible for the conversion of sucrose to fructooligosaccharides. A local strain of Rhizopus stolonifer isolated from spoilt orange fruit with high fructosyltransferase activity (U t) of 12.31–45.70 U mL−1 during a fermentation period of 24–120 h is herein reported. It showed low hydrolytic activity (U h) in the range of 0.86–1.78 U mL−1 during the same period. FOS yield of 34 % (1-kestose, GF2, nystose, GF3) was produced by FTase obtained from a 72 h-old culture using 60 g of sucrose per 100 mL of the substrate. When the isolate was grown in a defined submerged medium, its pH dropped sharply from the intial value of 5.5 to 1.0 within 24 h, and this value was maintained throughout the fermentation. The biomass content ranged from 8.8 g L−1 at 24 h of fermentation to reach the maximum of 10 g L−1 at 72 h. It was reduced to 5.6 g L−1 at the end of 120 h of fermentation. This report represents the first reference to a strain of Rhizopus as a source of FTase for the production of FOS. The high U t/U h ratio shown by this isolate indicates that it may be a good strain for the industrial and commercial production of FOS. However, there is a need of further optimization of the bioprocess to increase the conversion efficiency of sucrose to FOS by the enzyme.  相似文献   

7.
N-Chloroacetylcytisine was synthesized by acylation of (–)-cytisine. Stable Z- and E-conformers with respect to rotational isomerism around the N-12–CO bond were found in PMR spectra at room temperature. The point at which PMR resonances of the Z- and E-conformers coalesced upon heating was measured. The transition barrier between the conformers was estimated.  相似文献   

8.
The composition of lipids from the aerial parts of two species of halophytes from the family Chenopodiaceae, Halostachys caspica C. A. Mey. and Halocharis hispida Bge. was determined. Neutral lipids (NL, 62.1 and 54.2%, respectively) dominated the total lipids (TL) of these plants. More than a third of the NL were esters of aliphatic alcohols and phytosterols (FAE). Fatty acids 16:0, 18:1, and 18:2 dominated the acids of FAE; 16:0, 18:1, and 18:3, the phospholipids. The principal fatty acids of glycolipids were unsaturated acids (68.3 and 75.1%) with linolenic acid dominating (44.9 and 43.5%). Presented at the 7th International Symposium on the Chemistry of Natural Compounds, Tashkent, October 16–18, 2007. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 276–278, May–June, 2009.  相似文献   

9.
Alpha amylase (E.C. 3.2.1.1) of Bacillus amyloliquefaciens produced by submerged fermentation was purified to near homogeneity by ion exchange chromatography. Through the process 38.6-fold increase in purity with a specific activity of 72 U/mg proteins was obtained. The apparent molecular weight of the purified enzyme was found to be 58 kDa by SDS-PAGE. The enzyme was relatively stable between pH 5.0–8.0 and temperature between 50 and 60°C. The enzyme did not show any obligate requirement of metal ions but Ca2+ and Cu2+ enhanced the enzyme activity marginally and the thermostability was enhanced in the presence of Ca2+ ions. The purified enzyme exhibited maximal substrate specificity for amylose and efficiency in digesting various raw starches. The K m and V max of the enzyme was determined using both amylose and soluble starch as substrate. The analysis of the hydrolyzed products of soluble starch by thin layer chromatography showed the yield of maltosaccharides after 6 h of hydrolysis.  相似文献   

10.
A new stilbene glycoside, 5-methylresveratrol-3,4′-O-β-D-diglucopyranoside (1), was isolated from the n-butanol fraction of the rhizomes of Veratrum dahuricum, together with five known stilbenoids: resveratrol-3-O-β-D-glycoside (2), 4′-methylresveratrol-3-O-β-D-glycoside (3), oxyresveratrol-4′-O-β-D-glycoside (4), oxyresveratrol-3-O-β-D-glycoside (5), and oxyresveratrol-3,4′-O-β-D-diglycoside (6), and found for the first time in the investigated plant. The structures of six isolates were identified on the basis of 1D and 2D NMR data. Compounds 1–6 showed platelet aggregation inhibition, and compound 1 had an IC50 value of 383.6 μM against platelet aggregation induced by AA. Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 279–282, May–June, 2009.  相似文献   

11.
A feeding technology that was suitable for improving the nisin production by Lactococcus lactis subsp. lactis W28 was established. The effects of initial sucrose concentration (ISC) in the fermentation broth, feeding time, and feeding rate on the fermentation were studied. It was observed that a fed-batch culture (ISC = 10 g l−1) with 100 ml sucrose solution (190 g l−1) being evenly fed (9–10 ml h−1) into the fermenter after 3-h fermentation gave the best performance in terms of biomass and nisin yield. Under these conditions, the total biomass and the total nisin yield were approximately 23% and 51% higher than those in batch fermentation, respectively. When the sucrose concentration was controlled at 5–10 g l−1 in variable volume intermittent fed-batch fermentation (VVIF) with ISC = 10 g l−1, the total biomass and the total nisin yield were 29% and 60% above those in batch fermentation, respectively. The VVIF proved to be effective to eliminate the substrate inhibition by maintaining sucrose at appropriate levels. It is also easy to be scaled up, since various parameters involved in industrial production were taken into account.  相似文献   

12.
Lactobacillus bulgaricus grown on whey was dried by a simple thermal drying method at the range 35–55°C and its efficiency for lactic acid fermentation of whey was evaluated. Drying of cells in whey suspension in the examined temperature range did not affect significantly their viability (82–87% survival), indicating a protective effect of whey as both growth and drying medium. The kinetics of fermentation of whey and mixtures of whey/molasses using the dried culture were comparable to those of non-dried cells, and only low pH had a detrimental effect on the fermentation ability of the dried cells. Furthermore, dried L. bulgaricus, free or immobilized on casein coagulates, was used as starter for the production of unsalted hard-type cheese. The effects of the amount of starter culture and the immobilization technique, the evolution of microbial counts, and the sensory properties of the produced cheeses were evaluated during ripening at various temperatures.  相似文献   

13.
Two new flavonoid-C-glycosides named triticuside A (1a) and triticuside B (1b) were isolated from bran of Triticum aestivum L. The structures of the two new compounds were elucidated by spectral techniques including 1H NMR, 13C NMR as well as HSQC, HMBC, and COSY. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 135–137, March–April, 2008.  相似文献   

14.
Chitinase was purified from the culture medium of Bacillus licheniformis SK-1 by colloidal chitin affinity adsorption followed by diethylamino ethanol-cellulose column chromatography. The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of chitinase 72 (Chi72) were 72 kDa and 4.62 (Chi72) kDa, respectively. The purified chitinase revealed two activity optima at pH 6 and 8 when colloidal chitin was used as substrate. The enzyme exhibited activity in broad temperature range, from 40 to 70°C, with optimum at 55°C. It was stable for 2 h at temperatures below 60°C and stable over a broad pH range of 4.0–9.0 for 24 h. The apparent K m and V max of Chi72 for colloidal chitin were 0.23 mg ml−1 and 7.03 U/mg, respectively. The chitinase activity was high on colloidal chitin, regenerated chitin, partially N-acetylated chitin, and chitosan. N-bromosuccinamide completely inhibited the enzyme activity. This enzyme should be a good candidate for applications in the recycling of chitin waste.  相似文献   

15.
Helicobacter pylori diagnosis is fundamental in the management of gastrointestinal pathologies, whose current clinical guidelines support a non-invasive ‘test-and-treat’ strategy. As such, the present work reports the basis of a new, low-cost, specific breath test based on the detection of volatile carboxylic acids resulting from the hydrolysis of short-chain aliphatic amides by H. pylori amidases. Propionamide and butyramide, which are metabolized by amidases to propionic and butyric acids, were elected for this study. Conditions for the extraction of these acids from a vapour phase were optimized concerning the use of solid-phase microextraction (SPME) followed by gas chromatography–quadrupole mass spectrometry (GC–qMS) analysis. SPME–GC–qMS was then used to detect the acids released into a vapour phase upon incubation of a H. pylori reference strain J99 or a clinical specimen with the amides. These experiments have demonstrated that the administration of less than 9 mg of propionamide and/or butyramide to H. pylori cultures, in loads recognized to cause infection (106–109 cells), resulted in the formation of detectable and/or quantifiable amounts of propionic and/or butyric acids after 30 min incubation. As such, propionic and butyric acids can be used as biomarkers for H. pylori upon incubation with the corresponding amides. SPME–GC–qMS was also used to verify the hepatic stability of the acids. These experiments were conducted in mouse liver cells and revealed no signs of metabolization that could compromise their bioavailability in future in vivo assays. Moreover, SPME–GC–qMS permitted the detection of both acids in amounts as low as 0.8 μg in systems mimicking exhaled breath, demonstrating the sensitivity of the method for these compounds.  相似文献   

16.
The protective antigen (PA) of Bacillus anthracis is a potent immunogen and an important candidate vaccine. In addition, it is used in monitoring systems like enzyme-linked immunosorbent assay to assess antibodies against PA in immunized subjects. The low level of PA production in B. anthracis and the difficulty of separating it from other bacterial components have made the researchers do different studies with the aim of producing recombinant PA (rPA). In this study, to produce rPA as a recombinant protein vaccine, the partial sequence of protective antigen of B. anthracis, amino acids 175–764, as a potent immunogenic target was inserted in pET21b(+). This is a prokaryotic plasmid that carries an N-terminal T7.tag sequence. The integrity of constructed plasmid was confirmed using restriction enzyme mapping. rPA was expressed after induction with isopropyl β-d-1-thiogalactopyranoside in Escherichia coli BL21. Purification of rPA was done with an affinity system using anti T7.tag antibody. Electrophoresis and Western blotting confirmed the specificity of the expressed protein. BALB/c mice were immunized with obtained PA protein and evaluation of specific immunoglobulin G antibodies against PA in sera using Western blotting method and showed that rPA is immunogenic. The challenge of immunized mice with virulent strain of B. anthracis showed that rPA is functional to protect against pathogenic strain.  相似文献   

17.
Aaptamine (1) and isoaaptamine (2) were isolated from the marine sponge Aaptos aaptos; 6-bromo-2′-de-N-methylaplysinopsin (3) from the marine sponge Hyrtios sp. Alkaloids 1–3 were tested for the ability to trap 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, to reduce Folin–Ciocalteau reagent (FCR), and to inhibit oxidation of linoleic acid (LA) induced by peroxide radicals. Compounds 1 (IC50 18 μM), 2 (IC50 16 μM), and 3 (IC50 18 μM) reacted strongly with DPPH, comparable with trolox (IC50 16 μM) and showed high reducing ability for FCR. The inhibition of LA oxidation by 1–3 was comparable with that of ionol (BHT). It was shown that the antioxidant activity of 1–3 was related to their ability to release both electrons and H atoms.  相似文献   

18.
Thermomucor indicae-seudaticae, a glucoamylase-producing thermophilic mould, was mutagenised using nitrous acid and gamma (60Co) irradiation in a sequential manner to isolate deregulated mutants for enhanced production of glucoamylase. The mutants were isolated on Emerson YpSs agar containing a non-metabolisable glucose analogue 2-deoxy-d-glucose (2-DG) for selection. The preliminary screening for glucoamylase production using starch–iodine plate assay followed by quantitative confirmation in submerged fermentation permitted the isolation of several variants showing varying levels of derepression and glucoamylase secretion. The mutant strain T. indicae-seudaticae CR19 was able to grow in the presence of 0.5 g l−1 2-DG and produced 1.8-fold higher glucoamylase. As with the parent strain, glucoamylase production by T. indicae-seudaticae CR19 in 250-ml Erlenmeyer flasks attained a peak in 48 h of fermentation, showing higher glucoamylase productivity (0.67 U ml−1 h−1) than the former (0.375 U ml−1 h−1). A large-scale cultivation in 5-l laboratory bioreactor confirmed similar fermentation profiles, though the glucoamylase production peak was attained within 36 h attributable to the better control of process parameters. Although the mutant grew slightly slow in the presence of 2-DG and exhibited less sporulation, it showed faster growth on normal Emerson medium with a higher specific growth rate (0.138 h−1) compared to the parent strain (0.123 h−1). The glucoamylase produced by both strains was optimally active at 60 °C and pH 7.0 and displayed broad substrate specificity by cleaving α-1,4- and α-1,6-glycosidic linkages in starch, amylopectin, amylose and pullulan. Improved productivity and higher specific growth rate make T. indicae-seudaticae CR19 a useful strain for glucoamylase production.  相似文献   

19.
The optimization of nutrient levels for the production of pristinamycins by Streptomyces pristinaespiralis CGMCC 0957 in submerged fermentation was carried out using the statistical methodologies based on the Plackett–Burman design, the steepest ascent method, and the central composite design (CCD). First, the Plackett–Burman design was applied to evaluate the influence of related nutrients in the medium. Soluble starch and MgSO4·7H2O were then identified as the most significant nutrients with a confidence level of 99%. Subsequently, the concentrations of the two nutrients were further optimized using response surface methodology of CCD, together with the steepest ascent method. Accordingly, a second-order polynomial regression model was finally fitted to the experimental data. By solving the regression equation from the model and analyzing the response surface, the optimal levels for soluble starch and MgSO4·7H2O were determined as 20.95 and 5.67g/L, respectively. Under the optimized medium, the yield of pristinamycins in the shake flask and 5-L bioreactor could reach 1.30 and 1.01g/L, respectively, which is the highest yield reported in literature to date.  相似文献   

20.
The structures of seven triterpene glycosides (1–7), of which the 23-O-acetyl, 28-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl ester of hederagenin 3-O-β-D-glucopyranosyl-(1→3)-O-α-L-rhamnopyranosyl-(1→2)-O-α-L-arabinopyranoside (2) was new, from the flower buds of Lonicera macranthoides were established using chemical and NMR spectroscopic methods. Published in Khimiya Prirodnykh Soedinenii, No. 1, pp. 32–34, January–February, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号