首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
洪新  唐克 《燃料化学学报》2015,43(4):456-461
以十六烷基三甲基溴化铵为模板剂,正硅酸乙酯(TEOS)为硅源,硝酸铈为铈源,采用水热法合成了杂原子介孔分子筛Ce-MCM-41。XRD和FT-IR表征结果表明,当加入的Ce/Si物质的量比小于0.04时合成了规整有序的介孔结构,并将Ce原子引入到MCM-41骨架中。N2吸附-脱附测试获得MCM-41和Ce-MCM-41(Ce/Si物质的量比为0.04)的平均孔径分别为2.82和2.46 nm,孔容分别为0.762 1和 0.689 4 m3/g,BET比表面积分别为986.42和756.8 m2/g。NH3-TPD表征结果表明,Ce-MCM-41的酸性要明显强于MCM-41,但两种分子筛的酸性均较弱。利用合成的MCM-41和Ce-MCM-41吸附脱除甲硫醚浓度为58 μg(甲硫醚)/g的甲硫醚/氮气混合气中的甲硫醚。甲硫醚分子尺寸的模拟结果为0.464 8 nm,可以很容易地进入分子筛的介孔孔道中。由于Ce-MCM-41分子筛具有较多的酸量,其硫吸附容量7.52 mg(S)/g明显高于MCM-41的4.57 mg(S)/g。MCM-41和Ce-MCM-41都具有较好的再生性能,再生3次后硫吸附容量仍可恢复到初始容量的80%,分别为3.52和 5.86 mg(S)/g。  相似文献   

2.
Adsorption of CO2 was investigated over a wide range of conditions on a series of mesoporous silica adsorbents comprised of conventional MCM-41, pore-expanded MCM-41 silica (PE-MCM-41) and triamine surface-modified PE-MCM-41 (TRI-PE-MCM-41). The isosteric heat of adsorption, calculated from adsorption isotherms at different temperatures (298–328 K), showed a significant increase in CO2–adsorbent interaction after amine functionnalization of PE-MCM-41, consistent with the high CO2 uptake in the very low range of CO2 concentration. The CO2 adsorption isotherm and kinetics data showed the high potential of TRI-PE-MCM-41 material for CO2 removal in gas purification and separation applications. With TRI-PE-MCM-41, the CO2 selectivity over N2 was drastically improved over a wide range of conditions compared to pure mesoporous silica. Moreover, the adsorption was reversible and fast, and the adsorbent was thermally stable and tolerant to moisture.  相似文献   

3.
采用水热法合成了介孔MCM-41和Co-MCM-41分子筛,并利用XRD、FT-IR、低温N2吸附-脱附和NH3-TPD等方法对合成的分子筛进行了表征。考察了晶化时间、晶化温度、陈化时间对合成介孔Co-MCM-41分子筛的影响,确定较适宜的合成条件为陈化时间1 h,晶化温度110 ℃,晶化时间2 d。XRD 和FT-IR表征结果说明,Co原子已经进入MCM-41的骨架。MCM-41和Co-MCM-41的平均孔径均为2.82 nm,BET比表面积分别为986.42和 637.69 m2/g,孔容分别为0.762 1和0.537 2 m3/g。NH3-TPD的表征结果表明,MCM-41和Co-MCM-41的酸性都较弱,但Co-MCM-41的酸性明显强于MCM-41。在此基础上,利用合成的MCM-41和Co-MCM-41吸附脱除氮含量为1 737.35 μg/g的模拟燃料中的喹啉。喹啉分子尺寸的模拟结果为0.711 6 nm × 0.500 2 nm,说明其可以很容易地进入MCM-41和Co-MCM-41的介孔孔道中。Co-MCM-41分子筛的氮脱除率明显高于MCM-41,这是由于其较强的酸性及与喹啉之间的化学吸附,而且,Co-MCM-41吸附脱氮具有较好的再生性能。  相似文献   

4.
MCM-41 was synthesized by a soft template technique. The specific surface area and pore volume of the MCM-41 were 805.9 m2/g and 0.795 cm3/g, respectively. MCM-41-supported manganese and cobalt oxide catalysts were prepared by an impregnation method. The energy dispersive X-ray spectroscopy clearly confirmed the existence of Mn, Co, and O, which indicated the successful loading of the active components on the surface of MCM-41. The structure and function of the catalysts were changed by modulating the molar ratio of manganese to cobalt. The 10%MnCo(6:1)/MCM-41 (Mn/Co molar ratio is 6:1) catalyst displayed the best catalytic activity according to the activity evaluation experiments, and chlorobenzene (1000 ppm) was totally decomposed at 270 °C. The high activity correlated with a high dispersion of the oxides and was attributed to the exposure of more active sites, which was demonstrated by X-ray diffraction and high-resolution transmission electron microscopy. The strong interactions between MnO2, Co3O4, MnCoOx, and MCM-41 indicated that cobalt promoted the redox cycles of the manganese system. The bimetal-oxide-based catalyst showed better catalytic activity than that of the single metal oxide catalysts, which was further confirmed by H2 temperature-programmed reduction. Chlorobenzene temperature-programmed desorption results showed that 10%MnCo(6:1)/MCM-41 had higher adsorption strength for chlorobenzene than that of single metal catalysts. And stronger adsorption was beneficial for combustion of chlorobenzene. Furthermore, 10%MnCo(6:1)/MCM-41 was not deactivated during a continuous reaction for 1000 h at 260 °C and displayed good resistance to water and benzene, which indicated that the catalyst could be used in a wide range of applications.  相似文献   

5.
Adsorption of carbon dioxide (CO2) was investigated on triamine-grafted, pore-expanded MCM-41 mesoporous silica (TRI-PE-MCM-41). Measurements of adsorption capacity using mass spectrometry showed an enhanced CO2 adsorption capacity in humid streams compared to dry CO2. This was corroborated with breakthrough experiments, which also showed that TRI-PE-MCM-41 offered a practically infinite selectivity towards CO2 over nitrogen. Cyclic measurements of pure CO2 and CO2:N2 = 10:90 mixture using different regeneration modes showed that amine-grafted PE-MCM-41 is particularly suitable for CO2 removal using temperature swing adsorption (TSA) at adsorption temperatures higher than ambient, while temperature-vacuum swing adsorption (TVSA) may be attractive at ambient temperature.  相似文献   

6.
以十六烷基三甲基溴化铵为模板剂,硅酸钠为硅源,铝酸钠为铝源,在水热条件下成功地合成出了MCM-41中孔硅酸盐材料。采用XRD、低温N2吸附脱附等测试手段对合成的MCM-41样品进行了表征。通过优化合成条件,合成出孔径3.2 nm、比表面904m2/g和孔壁厚约1.46 nm的MCM-41分子筛。催化活性测定采用微反应活性实验来评价其活性和选择性。  相似文献   

7.
采用浸渍法将甲草胺吸附到纯硅MCM-41(M41)介孔材料中, 以六甲基二硅氮烷(HMDS)为表面改性剂, 通过气-固反应对吸附了甲草胺的M41材料(Ach/M41)进行疏水改性, 得到了既具有高载药性又能有效延缓甲草胺释放的缓释体系Ach/TMS-M41. XRD、低温N2吸附/脱附、FT-IR和TG等分析结果表明, 甲草胺在M41中的吸附量高达0.381 g·g-1(质量分数为27.6%), 此时M41仍保持原有的孔道结构, 且甲草胺能完全分散于M41孔道中. 分别对Ach/M41和Ach/TMS-M41在水中的缓释性能进行了测试, 甲草胺释放率分别为62%和38.1%, 表明疏水改性对延缓甲草胺释放有较好的效果. 而且, 介孔材料孔壁对甲草胺具有明显的紫外屏蔽保护作用.  相似文献   

8.
We construct an atomistic silica pore model mimicking templated mesoporous silica MCM-41, which has molecular-level surface roughness, with the aid of the electron density profile (EDP) of MCM-41 obtained from X-ray diffraction data. Then, we present the GCMC simulations of argon adsorption on our atomistic silica pore models for two different MCM-41 samples at 75, 80, and 87 K, and the results are compared with the experimental adsorption data. We demonstrate that accurate molecular modeling of the pore structure of MCM-41 by using the experimental EDP allows the prediction of experimental capillary evaporation pressures at all investigated temperatures. The experimental desorption branches of the two MCM-41 samples are in good agreement with equilibrium vapor–liquid transition pressures from the simulations, which suggests that the experimental desorption branch for the open-ended cylindrical pores is in thermodynamic equilibrium.  相似文献   

9.
采用水热法合成了MCM-41和不同Co/Si物质的量比的Co-MCM-41介孔材料,并采用XRD、FT-IR和低温氮气吸附-脱附方法对样品进行了表征。FT-IR及XRD表征结果说明,Co原子已经进入了介孔材料的孔壁。合成的MCM-41及Co/Si(物质的量比)为0.18以下的Co-M CM-41都具有六方有序排列的介孔结构。当加入的Co/Si(物质的量比)为0.22时,样品的(100)峰完全消失,不具备六方有序排列的介孔结构,说明以硝酸钴为钴源合成Co-MCM-41的最大Co加入量为Co/Si(物质的量比)为0.18左右。与MCM-41相比,各Co-MCM-41样品的XRD(100)峰随着Co加入量的增加逐渐变宽变弱,比表面积和孔容变小,平均孔径增大。当加入的Co/Si物质的量比大于0.06时,Co-MCM-41的介孔孔道中存在少量聚集态的Co3O4。利用合成的Co-MCM-41吸附脱除氮含量为1737.35μg/g模拟燃料中的碱性氮化物喹啉、苯胺或吡啶,结果表明,所有样品的吸附脱氮效果顺序为苯胺吡啶喹啉。Co-MCM-41(0.06)的吸附容量和氮脱除率明显要高于其他样品,对苯胺、吡啶和喹啉的吸附容量分别为42.17、35.66和29.18 mg(N)/g,去除率分别为82.38%、73.53%和61.11%。添加到模拟燃料中的芳烃化合物萘、苯或甲苯对其吸附脱氮没有影响,表明介孔材料Co-MCM-41对各种含氮化合物的吸附主要是N原子与Co的配位络合吸附,而不是π-π络合作用。采用焙烧或乙醇溶剂洗涤再生后的Co-MCM-41(0.06)恢复了吸附脱氮能力,说明其具有较好的再生性能。  相似文献   

10.
This paper reports a molecular simulation and experimental study on the adsorption and condensation of simple fluids in mesoporous micelle-templated silicas MCM-41, MCM-48, and SBA-15. MCM-41 is described as a regular cylindrical silica nanopore, while SBA-15 is assumed to be made up of cylindrical nanopores that are connected through lateral channels. The 3D-connected topology of MCM-48 is described using a gyroid periodic minimal surface. Argon adsorption at 77 K is calculated for the three materials using Grand Canonical Monte Carlo simulations. Qualitative comparison with experiments for nitrogen adsorption in mesoporous micelle-templated silicas is made. The adsorption isotherm for SBA-15 resembles that for MCM-41. In particular, capillary condensation and evaporation are not affected by the presence of the connecting lateral channels. In contrast, the argon adsorption isotherm for MCM-48 departs from that for MCM-41 having the same pore size. While condensation in MCM-41 is a one-step process, filling of MCM-48 involves two successive jumps in the adsorbed amounts which correspond to condensation in different domains of the porosity. The condensation pressure for MCM-48 is larger than that for MCM-41. We attribute this result to the morphology of the MCM-48 surface (made up of both concave and convex regions) that differs from that for MCM-41 (concave only). Our results suggest that the pore connectivity affects pore filling when the size of the connections is comparable to that of the nanopores.  相似文献   

11.
Hexagonally ordered mesoporous silica material MCM-41 (SBET?=?1090?m2/g, pore size?=?31.2 ?) was synthesized and modified by 3-aminopropyl ligands. The differences in an uptake and subsequent release of anti-inflammatory drug naproxen from unmodified and amino modified MCM-41 samples were studied. The prepared materials were characterized by high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM), nitrogen adsorption/desorption, Fourier-Transform Infrared Spectroscopy (FT-IR), Small-angle X-ray scattering (SAXS), thermoanalytical methods (TG/DTA) and elemental analysis. The amount of the drug released was monitored with thin layer chromatography (TLC) with densitometric detection in defined time intervals. The amounts of the released naproxen from mesoporous silica MCM-41/napro and amine-modified silica sample A-MCM-41/napro were 95 and 90% of naproxen after 72?h. In this study we compare the differences of release profiles from mesoporous silica MCM-41 and mesoporous silica SBA-15.  相似文献   

12.
辅助有机胺对介孔分子筛MCM-41合成及其性质的影响   总被引:3,自引:5,他引:3  
采用阳离子表面活性剂十六烷基三甲基溴化铵为模板剂、硫酸铝为铝源、硅溶胶为硅源,分别使用中等链长的有机胺和正己烷作为辅助添加剂,用水热晶化法在碱性介质中合成了介孔分子筛MCM-41,通过XRD、N2吸附-脱附、SEM测试手段对得到的样品进行了对比表征分析。实验结果表明,除三乙胺外,向反应体系中加入适量的三正丙胺、三正丁基胺、三正辛胺和二异丁胺后,均能够使介孔 MCM-41的d100值和孔径增大,且具有较大的BET表面积(>1 000 m2/g)和孔容(>1 cm3/g);加入正己烷后,也可以使得MCM-41孔径变大,但是和加入有机胺相比较,合成的样品具有较小的BET表面积(887.3 m2/g)和孔容(0.81 cm3/g)。  相似文献   

13.
Four different types of amine-attached MCM-48 silicas were prepared and investigated for CO(2) separation from N(2). Monomeric and polymeric hindered and unhindered amines were attached to the pore surface of the MCM-48 silica and characterized with respect to their CO(2) sorption properties. The pore structures and amino group content in these modified silicas were investigated by XRD, FT-IR, TGA, N(2) adsorption/desorption at 77 K and CHN/Si analysis, which confirmed that in all cases the amino groups were attached to the pore surface of MCM-48 at 1.5-5.2 mmol/g. The N(2) adsorption/desorption analysis showed a considerable decrease of the pore volume and surface area for the MCM-48 silica containing a polymeric amine (e.g., polyethyleneimine). The CO(2) adsorption rates and capacities of the amine-attached MCM-48 samples were studied employing a sorption microbalance. The results obtained indicated that in addition to the concentration of surface-attached amino groups, specific interactions between CO(2) and the surface amino groups, and the resultant pore structure after amine group attachment have a significant impact on CO(2) adsorption properties of these promising adsorbent materials.  相似文献   

14.
We present an accurate comparative analysis of N 2 adsorption at 77 K on nonporous silica and the pore wall surface of MCM-41 materials. The analysis shows that in the low-pressure region of N 2 adsorption obeys a peculiar mechanism governed by short-ranged forces, which makes the surface curvature effect on the N 2 adsorption in mesopores nearly negligible. We used this observation to define more exactly compared to the BET technique the specific surface area of the reference adsorption isotherm on nonporous silica basing on XRD data and linear sections of t-plots. Calculation of the capillary evaporation and condensation pressures seems to confirm our previous finding that the capillary condensation pressure corresponds to the equilibrium transition rather than spinodal condensation at least for pore sizes less than 7 nm. It allowed us to provide more reliable pore size distribution (PSD) analysis of mesoporous silica materials. For example, the PSDs of MCM-41 samples do not show artificial peaks in the micropore range that we obtained in our earlier publications.  相似文献   

15.
本文基于介孔材料具有均一可调的孔径结构、高比表面积以及稳定的骨架,利用硅藻土作为硅源,CTAB(十六烷基三甲基溴化铵)为模板剂,掺杂聚丙烯酸,制备了杂化的功能介孔材料MCM-41-PAA,采用FT-IR、XRD、氮气吸脱附、SEM等手段对该介孔材料的组成、结构与形貌进行了表征,并利用所制备的功能吸附剂MCM-41-PAA对Hg(Ⅱ)进行了吸附研究,探讨了吸附剂的用量、Hg(Ⅱ)初始浓度、pH值和吸附时间等因素对Hg(Ⅱ)离子吸附效果的影响。研究表明:当吸附剂的用量、Hg(Ⅱ)浓度、pH和吸附时间分别为0.2g、300mg/L、4和180min时,对应的吸附量达到132mg/g。  相似文献   

16.
This work is focused on the elaboration of methodology for adsorption characterization of porous silicas by using benzene adsorption isotherms measured on good quality MCM-41 materials. Three MCM-41 samples were synthesized by using tetraethyl orthosilicate (TEOS) as silica source and surfactants, octyltrimethylammonium (C8), decyltrimethylammonium (C10) and cetyltrimethylammonium (C16) bromides as templates. A characteristic feature of this synthesis was relatively long hydrothermal treatment (5 days) at 373 K, which gave well ordered samples as evidenced by powder XRD analysis. Benzene adsorption isotherms measured on these MCM-41 samples were used to evaluate such standard quantities as the BET specific surface area, total pore volume, external surface area and the volume of ordered mesopores, and to obtain the statistical film thickness (t-curve) as well as the Kelvin-type relation, which describes the dependence between pore width and condensation pressure for benzene on silica at 298 K. The latter relations were incorporated into the Barrett-Joyner-Halenda algorithm to extend its applicability to calculate the pore size distributions from benzene adsorption data.  相似文献   

17.
We present a novel quenched solid density functional theory (QSDFT) model of adsorption on heterogeneous surfaces and porous solids, which accounts for the effects of surface roughness and microporosity. Within QSDFT, solid atoms are considered as quenched component(s) of the solid-fluid system with given density distribution(s). Solid-fluid intermolecular interactions are split into hard-sphere repulsive and mean-field attractive parts. The former are treated with the multicomponent fundamental measure density functional. Capabilities of QSDFT are demonstrated by drawing on the example of adsorption on amorphous silica materials. We show that, using established intermolecular potentials and a realistic model for silica surfaces, QSDFT quantitatively describes adsorption/desorption isotherms of Ar and Kr on reference MCM-41, SBA-15, and LiChrosphere materials in a wide range of relative pressures. QSDFT offers a systematic approach to the practical problems of characterization of microporous, mesoporous, and amorphous silica materials, including an assessment of microporosity, surface roughness, and adsorption deformation. Predictions for the pore diameter and the extent of pore surface roughness in MCM-41 and SBA-15 materials are in very good agreement with recent X-ray diffraction studies.  相似文献   

18.
磺酸功能化的MCM-41催化三乙酸甘油酯与甲醇的酯交换反应   总被引:2,自引:0,他引:2  
通过在孔壁上覆盖糠醇聚合物,于不同温度下用浓硫酸直接进行磺化制备了一系列磺酸基功能化的MCM-41介孔材料,并用氮气吸附-脱附、XRD、XPS和红外光谱等方法对其进行了结构表征,以三乙酸甘油酯和甲醇的酯交换反应为模型反应研究了生物柴油的制备.结果表明,在介孔结构完好的情况下,一定数量的磺酸基嫁接到了MCM-41的孔擘上...  相似文献   

19.
以四乙基氢氧化铵(TEAOH)为微孔模板剂,十六烷基三甲基溴化铵(CTAB)为介孔模板剂,SiO2、Fumed Silica或TEOS为硅源,通过微波两步自组装合成Beta-MCM-41型中微双孔分子筛。然后以合成的Beta-MCM-41(BM-S-M)、实验室自制的Beta、MCM-41、SBA-15以及γ-Al2O3为载体,通过等体积浸渍15%MoO3,3%NiO和3%CoO,制备得到Co-Mo-Ni-BM-S-M等氧化物催化剂;并在间歇式高温高压反应釜中,在350℃、5.0MPa H2压力下,以二苯并噻吩(DBT)为模拟油品研究所制备催化剂的加氢脱硫性能及反应动力学。结果表明,SiO2为硅源,微波辐射合成的BM-S-M分子筛结构有序性更好,比表面积(1033.923m2/g)和孔容(0.729cm3/g)更大,孔径集中分布在3.08nm(中孔)和1.22nm(微孔),且具有较强的酸性中心。4种不同载体催化剂的DBT加氢脱硫活性顺序为Co-Mo-Ni-BM-S-M>Co-Mo-Ni-MCM-41>商业Co-Mo-Al2O3>Co-Mo-Ni-Beta。此外,4种不同载体催化剂的加氢脱硫过程符合拟一级动力学规律。  相似文献   

20.
The attempt of preparing efficient adsorbent to capture nitrosamines in aqueous solution is reported in this paper, in order to develop new mesoporous functional materials for environment protection. Adsorption of nitrosamines in an aqueous solution containing the tobacco-extract, by zeolite and mesoporous silica was investigated in detail. The influence of structural parameters such as pore size, Si/Al ratio and cation on the adsorption of zeolite was examined. Emphatically, two modification methods, one-pot synthesis and solid state grinding were employed to incorporate aluminum in mesoporous silica MCM-41 since MCM-41 possesses the suitable pore size for the trap of tobacco specific nitrosamines (TSNAs) in solution. The resulting composites were characterized by XRD, N2 adsorption at 77 K, FTIR and NH3-TPD to inspect their property and function. The impact of modifier amount and preparative method on the actual adsorption of the Al-containing composite was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号