首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Let \mathbbK\mathbb{K} be a field, G a reductive algebraic \mathbbK\mathbb{K}-group, and G 1G a reductive subgroup. For G 1G, the corresponding groups of \mathbbK\mathbb{K}-points, we study the normalizer N = N G (G 1). In particular, for a standard embedding of the odd orthogonal group G 1 = SO(m, \mathbbK\mathbb{K}) in G = SL(m, \mathbbK\mathbb{K}) we have N ≅ G 1 ⋊ μ m ( \mathbbK\mathbb{K}), the semidirect product of G 1 by the group of m-th roots of unity in \mathbbK\mathbb{K}. The normalizers of the even orthogonal and symplectic subgroup of SL(2n, \mathbbK\mathbb{K}) were computed in [Širola B., Normalizers and self-normalizing subgroups, Glas. Mat. Ser. III (in press)], leaving the proof in the odd orthogonal case to be completed here. Also, for G = GL(m, \mathbbK\mathbb{K}) and G 1 = O(m, \mathbbK\mathbb{K}) we have N ≅ G 1 ⋊ \mathbbK\mathbb{K} ×. In both of these cases, N is a self-normalizing subgroup of G.  相似文献   

2.
We prove that the symplectic group Sp(2n,\mathbbZ){Sp(2n,\mathbb{Z})} and the mapping class group Mod S of a compact surface S satisfy the R property. We also show that B n (S), the full braid group on n-strings of a surface S, satisfies the R property in the cases where S is either the compact disk D, or the sphere S 2. This means that for any automorphism f{\phi} of G, where G is one of the above groups, the number of twisted f{\phi}-conjugacy classes is infinite.  相似文献   

3.
We determine which singular del Pezzo surfaces are equivariant compactifications of \mathbbG\texta2 \mathbb{G}_{\text{a}}^2 , to assist with proofs of Manin’s conjecture for such surfaces. Additionally, we give an example of a singular quartic del Pezzo surface that is an equivariant compactification of \mathbbG\texta {\mathbb{G}_{\text{a}}} ⋊ \mathbbG\textm {\mathbb{G}_{\text{m}}} . Bibliography: 32 titles.  相似文献   

4.
5.
Let Γ ⊂ ℝd be a bounded strictly convex surface. We prove that the number kn(Γ) of points of Γ that lie on the lattice satisfies the following estimates: lim inf kn(Γ)/nd−2 < ∞ for d ≥ 3 and lim inf kn(Γ)/log n < ∞ for d = 2. Bibliography: 9 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 344, 2007, pp. 174–189.  相似文献   

6.
We prove the existence of a global heat flow u : Ω ×  \mathbbR+ ? \mathbbRN {\mathbb{R}^{+}} \to {\mathbb{R}^{N}}, N > 1, satisfying a Signorini type boundary condition u(∂Ω ×  \mathbbR+ {\mathbb{R}^{+}}) ⊂  \mathbbRn {\mathbb{R}^{n}}), n \geqslant 2 n \geqslant 2 , and \mathbbRN {\mathbb{R}^{N}}) with boundary [`(W)] \bar{\Omega } such that φ(∂Ω) ⊂ \mathbbRN {\mathbb{R}^{N}} is given by a smooth noncompact hypersurface S. Bibliography: 30 titles.  相似文献   

7.
Let G be a finite non-Abelian group. We define a graph Γ G ; called the noncommuting graph of G; with a vertex set GZ(G) such that two vertices x and y are adjacent if and only if xyyx: Abdollahi, Akbari, and Maimani put forward the following conjecture (the AAM conjecture): If S is a finite non-Abelian simple group and G is a group such that Γ S ≅ Γ G ; then SG: It is still unknown if this conjecture holds for all simple finite groups with connected prime graph except \mathbbA10 {\mathbb{A}_{10}} , L 4(8), L 4(4), and U 4(4). In this paper, we prove that if \mathbbA16 {\mathbb{A}_{16}} denotes the alternating group of degree 16; then, for any finite group G; the graph isomorphism G\mathbbA16 @ GG {\Gamma_{{\mathbb{A}_{16}}}} \cong {\Gamma_G} implies that \mathbbA16 @ G {\mathbb{A}_{16}} \cong G .  相似文献   

8.
It is shown that for any t, 0<t<∞, there is a Jordan arc Γ with endpoints 0 and 1 such that G\{1} í \mathbbD:={z:|z| < 1}\Gamma\setminus\{1\}\subseteq\mathbb{D}:=\{z:|z|<1\} and with the property that the analytic polynomials are dense in the Bergman space \mathbbAt(\mathbbD\G)\mathbb{A}^{t}(\mathbb{D}\setminus\Gamma) . It is also shown that one can go further in the Hardy space setting and find such a Γ that is in fact the graph of a continuous real-valued function on [0,1], where the polynomials are dense in Ht(\mathbbD\G)H^{t}(\mathbb{D}\setminus\Gamma) ; improving upon a result in an earlier paper.  相似文献   

9.
This paper continues the study of associative and Lie deep matrix algebras, DM(X,\mathbbK){\mathcal{DM}}(X,{\mathbb{K}}) and \mathfrakgld(X,\mathbbK){\mathfrak{gld}}(X,{\mathbb{K}}), and their subalgebras. After a brief overview of the general construction, balanced deep matrix subalgebras, BDM(X,\mathbbK){\mathcal{BDM}}(X,{\mathbb{K}}) and \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}), are defined and studied for an infinite set X. The global structures of these two algebras are studied, devising a depth grading on both as well as determining their ideal lattices. In particular, \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) is shown to be semisimple. The Lie algebra \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) possesses a deep Cartan decomposition and is locally finite with every finite subalgebra naturally enveloped by a semi-direct product of \mathfraksln{\mathfrak{{sl}_n}}’s. We classify all associative bilinear forms on \mathfraksl2\mathfrakd{\mathfrak{sl}_2\mathfrak{d}} (a natural depth analogue of \mathfraksl2{\mathfrak{{sl}_2}}) and \mathfrakbld{\mathfrak{bld}}.  相似文献   

10.
Polynomial n × n matrices A(x) and B(x) over a field \mathbbF \mathbb{F} are called semiscalar equivalent if there exist a nonsingular n × n matrix P over \mathbbF \mathbb{F} and an invertible n × n matrix Q(x) over \mathbbF \mathbb{F} [x] such that A(x) = PB(x)Q(x). We give a canonical form with respect to semiscalar equivalence for a matrix pencil A(x) = A 0x - A 1, where A 0 and A 1 are n × n matrices over \mathbbF \mathbb{F} , and A 0 is nonsingular.  相似文献   

11.
Let (Ω , F , P ) be a probability space and L0 ( F, R ) the algebra of equivalence classes of real- valued random variables on (Ω , F , P ). When L0 ( F, R ) is endowed with the topology of convergence in probability, we prove an intermediate value theorem for a continuous local function from L0 ( F, R ) to L0 ( F, R ). As applications of this theorem, we first give several useful expressions for modulus of random convexity, then we prove that a complete random normed module ( S,|| · ||) is random uniformly convex iff Lp ( S ) is uniformly convex for each fixed positive number p such that 1 p + ∞ .  相似文献   

12.
We consider the operator exponential e tA , t > 0, where A is a selfadjoint positive definite operator corresponding to the diffusion equation in \mathbbRn {\mathbb{R}^n} with measurable 1-periodic coefficients, and approximate it in the operator norm ||   ·   ||L2( \mathbbRn ) ? L2( \mathbbRn ) {\left\| {\; \cdot \;} \right\|_{{{L^2}\left( {{\mathbb{R}^n}} \right) \to {L^2}\left( {{\mathbb{R}^n}} \right)}}} with order O( t - \fracm2 ) O\left( {{t^{{ - \frac{m}{2}}}}} \right) as t → ∞, where m is an arbitrary natural number. To construct approximations we use the homogenized parabolic equation with constant coefficients, the order of which depends on m and is greater than 2 if m > 2. We also use a collection of 1-periodic functions N α (x), x ? \mathbbRn x \in {\mathbb{R}^n} , with multi-indices α of length | a| \leqslant m \left| \alpha \right| \leqslant m , that are solutions to certain elliptic problems on the periodicity cell. These results are used to homogenize the diffusion equation with ε-periodic coefficients, where ε is a small parameter. In particular, under minimal regularity conditions, we construct approximations of order O(ε m ) in the L 2-norm as ε → 0. Bibliography: 14 titles.  相似文献   

13.
We describe the structure of the space Ws,p( \mathbbSn;\mathbbS1 ) {W^{s,p}}\left( {{\mathbb{S}^n};{\mathbb{S}^1}} \right) , where 0 < s < ∞ and 1 ≤ p < ∞. According to the values of s, p, and n, maps in Ws,p( \mathbbSn;\mathbbS1 ) {W^{s,p}}\left( {{\mathbb{S}^n};{\mathbb{S}^1}} \right) can either be characterised by their phases or by a couple (singular set, phase).  相似文献   

14.
Harold Widom proved in 1966 that the spectrum of a Toeplitz operator T(a) acting on the Hardy space Hp(\mathbbT)H^p({\mathbb{T}}) over the unit circle \mathbbT{\mathbb{T}} is a connected subset of the complex plane for every bounded measurable symbol a and 1 < p < ∞. In 1972, Ronald Douglas established the connectedness of the essential spectrum of T(a) on H2(\mathbbT)H^2({\mathbb{T}}). We show that, as was suspected, these results remain valid in the setting of Hardy spaces Hp(Γ,w), 1 < p < ∞, with general Muckenhoupt weights w over arbitrary Carleson curves Γ.  相似文献   

15.
Let ${\mathfrak{g}}Let \mathfrakg{\mathfrak{g}} be a finite dimensional simple Lie algebra over an algebraically closed field \mathbbK\mathbb{K} of characteristic 0. Let \mathfrakg\mathbbZ{\mathfrak{g}}_{{\mathbb{Z}}} be a Chevalley ℤ-form of \mathfrakg{\mathfrak{g}} and \mathfrakg\Bbbk=\mathfrakg\mathbbZ?\mathbbZ\Bbbk{\mathfrak{g}}_{\Bbbk}={\mathfrak{g}}_{{\mathbb{Z}}}\otimes _{{\mathbb{Z}}}\Bbbk, where \Bbbk\Bbbk is the algebraic closure of  \mathbbFp{\mathbb{F}}_{p}. Let G\BbbkG_{\Bbbk} be a simple, simply connected algebraic \Bbbk\Bbbk-group with \operatornameLie(G\Bbbk)=\mathfrakg\Bbbk\operatorname{Lie}(G_{\Bbbk})={\mathfrak{g}}_{\Bbbk}. In this paper, we apply recent results of Rudolf Tange on the fraction field of the centre of the universal enveloping algebra U(\mathfrakg\Bbbk)U({\mathfrak{g}}_{\Bbbk}) to show that if the Gelfand–Kirillov conjecture (from 1966) holds for \mathfrakg{\mathfrak{g}}, then for all p≫0 the field of rational functions \Bbbk (\mathfrakg\Bbbk)\Bbbk ({\mathfrak{g}}_{\Bbbk}) is purely transcendental over its subfield \Bbbk(\mathfrakg\Bbbk)G\Bbbk\Bbbk({\mathfrak{g}}_{\Bbbk})^{G_{\Bbbk}}. Very recently, it was proved by Colliot-Thélène, Kunyavskiĭ, Popov, and Reichstein that the field of rational functions \mathbbK(\mathfrakg){\mathbb{K}}({\mathfrak{g}}) is not purely transcendental over its subfield \mathbbK(\mathfrakg)\mathfrakg{\mathbb{K}}({\mathfrak{g}})^{\mathfrak{g}} if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4. We prove a modular version of this result (valid for p≫0) and use it to show that, in characteristic 0, the Gelfand–Kirillov conjecture fails for the simple Lie algebras of the above types. In other words, if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4, then the Lie field of \mathfrakg{\mathfrak{g}} is more complicated than expected.  相似文献   

16.
To any field \Bbb K \Bbb K of characteristic zero, we associate a set (\mathbbK) (\mathbb{K}) and a group G0(\Bbb K) {\cal G}_0(\Bbb K) . Elements of (\mathbbK) (\mathbb{K}) are equivalence classes of families of Lie polynomials subject to associativity relations. Elements of G0(\Bbb K) {\cal G}_0(\Bbb K) are universal automorphisms of the adjoint representations of Lie bialgebras over \Bbb K \Bbb K . We construct a bijection between (\mathbbKG0(\Bbb K) (\mathbb{K})\times{\cal G}_0(\Bbb K) and the set of quantization functors of Lie bialgebras over \Bbb K \Bbb K . This construction involves the following steps.? 1) To each element v \varpi of (\mathbbK) (\mathbb{K}) , we associate a functor \frak a?\operatornameShv(\frak a) \frak a\mapsto\operatorname{Sh}^\varpi(\frak a) from the category of Lie algebras to that of Hopf algebras; \operatornameShv(\frak a) \operatorname{Sh}^\varpi(\frak a) contains U\frak a U\frak a .? 2) When \frak a \frak a and \frak b \frak b are Lie algebras, and r\frak a\frak b ? \frak a?\frak b r_{\frak a\frak b} \in\frak a\otimes\frak b , we construct an element ?v (r\frak a\frak b) {\cal R}^{\varpi} (r_{\frak a\frak b}) of \operatornameShv(\frak a)?\operatornameShv(\frak b) \operatorname{Sh}^\varpi(\frak a)\otimes\operatorname{Sh}^\varpi(\frak b) satisfying quasitriangularity identities; in particular, ?v(r\frak a\frak b) {\cal R}^\varpi(r_{\frak a\frak b}) defines a Hopf algebra morphism from \operatornameShv(\frak a)* \operatorname{Sh}^\varpi(\frak a)^* to \operatornameShv(\frak b) \operatorname{Sh}^\varpi(\frak b) .? 3) When \frak a = \frak b \frak a = \frak b and r\frak a ? \frak a?\frak a r_\frak a\in\frak a\otimes\frak a is a solution of CYBE, we construct a series rv(r\frak a) \rho^\varpi(r_\frak a) such that ?v(rv(r\frak a)) {\cal R}^\varpi(\rho^\varpi(r_\frak a)) is a solution of QYBE. The expression of rv(r\frak a) \rho^\varpi(r_\frak a) in terms of r\frak a r_\frak a involves Lie polynomials, and we show that this expression is unique at a universal level. This step relies on vanishing statements for cohomologies arising from universal algebras for the solutions of CYBE.? 4) We define the quantization of a Lie bialgebra \frak g \frak g as the image of the morphism defined by ?v(rv(r)) {\cal R}^\varpi(\rho^\varpi(r)) , where r ? \mathfrakg ?\mathfrakg* r \in \mathfrak{g} \otimes \mathfrak{g}^* .<\P>  相似文献   

17.
We obtain a representation for the sharp coefficient in an estimate of the modulus of the nth derivative of an analytic function in the upper half-plane \mathbbC+ {\mathbb{C}_{+} } . It is assumed that the boundary value of the real part of the function on ?\mathbbC+ \partial {\mathbb{C}_{+} } belongs to L p . This representation is specified for p = 1 and p = 2. For p = ∞ and for derivatives of odd order, an explicit formula for the sharp coefficient is found. A limit relation for the sharp coefficient in a pointwise estimate for the modulus of the n-th derivative of an analytic function in a disk is found as the point approaches the boundary circle. It is assumed that the boundary value of the real part of the function belongs to L p . The relation in question contains the sharp constant from the estimate of the modulus of the n-th derivative of an analytic function in \mathbbC+ {\mathbb{C}_{+} } . As a corollary, a limit relation for the modulus of the n-th derivative of an analytic function with the bounded real part is obtained in a domain with smooth boundary. Bibliography: 8 titles.  相似文献   

18.
Harmonic analysis on ℤ(p ) and the corresponding representation of the Heisenberg-Weyl group HW[ℤ(p ),ℤ(p ),ℤ(p )], is studied. It is shown that the HW[ℤ(p ),ℤ(p ),ℤ(p )] with a homomorphism between them, form an inverse system which has as inverse limit the profinite representation of the Heisenberg-Weyl group \mathfrak HW[\mathbbZp,\mathbbZp,\mathbbZp]\mathfrak {HW}[{\mathbb{Z}}_{p},{\mathbb{Z}}_{p},{\mathbb{Z}}_{p}]. Harmonic analysis on ℤ p is also studied. The corresponding representation of the Heisenberg-Weyl group HW[(ℚ p /ℤ p ),ℤ p ,(ℚ p /ℤ p )] is a totally disconnected and locally compact topological group.  相似文献   

19.
This paper presents rules for numerical integration over spherical caps and discusses their properties. For a spherical cap on the unit sphere \mathbbS2\mathbb{S}^2, we discuss tensor product rules with n 2/2 + O(n) nodes in the cap, positive weights, which are exact for all spherical polynomials of degree ≤ n, and can be easily and inexpensively implemented. Numerical tests illustrate the performance of these rules. A similar derivation establishes the existence of equal weight rules with degree of polynomial exactness n and O(n 3) nodes for numerical integration over spherical caps on \mathbbS2\mathbb{S}^2. For arbitrary d ≥ 2, this strategy is extended to provide rules for numerical integration over spherical caps on \mathbbSd\mathbb{S}^d that have O(n d ) nodes in the cap, positive weights, and are exact for all spherical polynomials of degree ≤ n. We also show that positive weight rules for numerical integration over spherical caps on \mathbbSd\mathbb{S}^d that are exact for all spherical polynomials of degree ≤ n have at least O(n d ) nodes and possess a certain regularity property.  相似文献   

20.
Two natural extensions of Jensen’s functional equation on the real line are the equations f(xy) + f(xy −1) =  2f(x) and f(xy) + f(y −1 x) =  2f(x), where f is a map from a multiplicative group G into an abelian additive group H. In a series of papers (see Ng in Aequationes Math 39:85–99, 1990; Ng in Aequationes Math 58:311–320, 1999; Ng in Aequationes Math 62:143–159, 2001), Ng solved these functional equations for the case where G is a free group and the linear group GLn(R), R=\mathbbZ,\mathbbR{{GL_n(R), R=\mathbb{Z},\mathbb{R}}} , is a quadratically closed field or a finite field. He also mentioned, without a detailed proof, in the above papers and in (see Ng in Aequationes Math 70:131–153, 2005) that when G is the symmetric group S n , the group of all solutions of these functional equations coincides with the group of all homomorphisms from (S n , ·) to (H, + ). The aim of this paper is to give an elementary and direct proof of this fact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号