首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
In this paper, the clustering behavior of solid particles in a two-dimensional (2D) liquid-solid fluidized-bed was studied by using the charge coupled devices (CCD) imaging measuring and processing technique and was characterized by fractal analysis. CCD images show that the distribution of solid particles in the 2D liquid-solid fluidised-bed is not uniform and self-organization behavior of solid particles was observed under the present experimental conditions. The solid particles move up in the 2D fluidized-bed in groups or clusters whose configurations are often in the form of horizontal strands. The box fractal dimension of the cluster images in the 2D liquid-solid fluidized-bed increases with the rising of solid holdup and reduces with the increment of solid particle diameter and superficial liquid velocity. At given solid holdup and solid particle size, the lighter particles show smaller fractal dimensions.  相似文献   

3.
In this study, an inverse-problem method was applied to estimate the solid concentration in a solid–liquid two-phase flow. An algebraic slip mixture model was introduced to solve the forward problem of solid–liquid convective heat transfer. The time-average conservation equations of mass, momentum, energy, as well as the volume fraction equation were computed in a computational fluid dynamics (CFD) simulation. The solid concentration in the CFD model was controlled using an external program that included the inversion iteration, and an optimal estimation was performed via experimental measurements. Experiments using a fly-ash–water mixture and sand–water mixture with different solid concentrations in a horizontal pipeline were conducted to verify the accuracy of the inverse-problem method. The estimated results were rectified using a method based on the relationship between the estimated results and estimation error; consequently, the accuracy of the corrected inversion results improved significantly. After a verification through experiments, the inverse-problem method was concluded to be feasible for predicting the solid concentration, as the estimation error of the corrected results was within 7% for all experimental samples for a solid concentration of less than 50%. The inverse-problem method is expected to provide accurate predictions of the solid concentration in solid–liquid two-phase flow systems.  相似文献   

4.
In this work, the scale-up methodology of He et al. (1997) that is based on maintaining similar or close dimensionless groups in gas–solid spouted beds has been evaluated. Two geometrically similar spouted beds of 0.152 m and 0.076 m diameter have been used. It has been demonstrated experimentally, that there is non-similarity in the local hydrodynamic parameters such as solids holdup and dimensionless solids velocity, when all the dimensionless groups have been matched or close to each other in the two studied spouted beds. This confirms that the global hydrodynamic parameters should not be used to confirm the validity of or to evaluate the dimensionless groups scale-up based methodologies.  相似文献   

5.
In the preparation of surface coatings made of conductive composites consisting of conductive particulate fillers in a soft matrix, cracks will develop with increase of the particulate loading, which is believed to be related to the nucleophilic addition reaction between glycidyl end-capped poly (bisphenol A-co-epichlorohydrin) and isophorone diisocyanate molecules. This curing reaction is responsible for the generation of crosslinking network throughout the coatings. The influence of solid particle loading on the chemical reaction may be described as a volume-excluded effect, that is, the high solid particle loading will occupy the space between the functional groups thus preventing the chemical reaction to take place. As a direct consequence, the cross-linking network cannot develop properly due to the insufficiency of curing reaction. This will lead to the generation of cracks, as was supported by FT-IR analysis in this work.  相似文献   

6.
In this study, the interaction of a planar shock wave with a group of particles has been investigated using high-speed photography and dynamic pressure measurements. Experiments were carried out in a horizontal circular shock tube. The influence of the particle loading ratio, particle diameter, driving gas and shock wave Mach number on the acceleration was studied. It was found that the higher the particle loading ratio, the greater was the particle velocity. This is due to the higher driving pressure. Helium and nitrogen gases play quite different roles in acceleration. Pressure multiplication during shock wave interaction with particles also appears. Based on the experimental results, the discussion regarding partial quantitative velocities and accelerations of particle groups, as well as the attenuation factors when shock waves pass through the particles, is given.  相似文献   

7.
Blockage is an important phenomenon in particulate flow. Work was undertaken to provide a better understanding of key hydrodynamic multiphase flow factors which cause, or contribute to, stalling and blockage in particulate feeding systems such as those used for feeding biomass into reactors. Rubber and plastic particles were hydraulically conveyed along a horizontal rectangular duct leading to constrictions of different geometries. Experimental results showed that large size, irregular shape, high volumetric concentrations of particles, small constriction dimensions and particle compressibility all increased the likelihood of blockage. Reynolds number also had a significant effect on particle behaviour and blockage propensity. The pressure drop needed to break a blockage is also considered, based on a simple horizontal packed bed model.  相似文献   

8.
In the processes involving the movement of solid particles, acoustic emissions are caused by particle friction, collision and fluid turbulence. Particle behavior can therefore be monitored and characterized by assessing the acoustic emission signals. Herein, extensive measurements were carried out by microphone at different superficial gas velocities with different particle sizes. Acoustic emission signals were processed using statistical analysis from which the minimum fluidization velocity was determined from the variation of standard deviation, skewness and kurtosis of acoustic emission signals against superficial gas velocity. Initial minimum fluidization velocity, corresponding to onset of fluidization of finer particles in the solids mixture, at which isolated bubbles occur, was also detected by this method. It was shown that the acoustic emission measurement is highly feasible as a practical method for monitoring the hydrodynamics of gas–solid fluidized beds.  相似文献   

9.
Vibrating separation is a significant method for liquid–solid separation. A typical example is the vibrating screen to dewater wet granular matter. The properties of granular matter and the vibrating parameters significantly affect the separation efficiency. This study investigates the effect of vibration parameters in separation based on the breakage of large-scale liquid bridge numerically by using a calibrated simulation model. Through analysing the simulation results, the liquid bridge shape and the volume between two sphere particles for various particle sizes and particle distances were studied in the static condition under the effect of gravity. The results show a general reducing trend of liquid bridge volume when the radius ratio of two particles increases, particularly when the ratio increases to 5. Additionally, a set of vibrating motion was applied to the liquid bridge in the simulation model. A group of experiments were also performed to validate the simulation model with vibration. Then, the effect of vibrating peak acceleration, distance between spheres and radius on the separation efficiency which was reflected by the residual water were investigated. It is found that separation efficiency increased obviously with the peak acceleration and the increase slowed down after the peak acceleration over 1 m/s2.  相似文献   

10.
The utilization of hydrogen is gaining increasing attention due to its high heating value and environmentally friendly combustion product. The supercritical water circulating fluidized bed reactor is a promising and potentially clean technology that can generate hydrogen from coal gasification. Cyclone is a vital part of the reactor which can separate incomplete decomposition of pulverized coal particles from mixed working fluid. This paper aims to gain in-depth understanding of the cyclone separation mechanisms under supercritical fluid by computational fluid dynamics (CFD). Although the amount of supercritical carbon dioxide in mixed working fluid is minor, it obviously influences the flow fields and separation efficiency of a cyclone. The simulation results suggest that both the decreasing content of supercritical carbon dioxide and adding the extra dipleg cause the promoting performance of cyclones. Research findings could refine the design of supercritical fluid–solid cyclones.  相似文献   

11.
Particle polydispersity is ubiquitous in industrial fluidized beds, which possesses a significant impact on hydrodynamics of gas–solid flow. Computational fluid dynamics-discrete element method (CFD-DEM) is promising to adequately simulate gas–solid flows with continuous particle size distribution (PSD) while it still suffers from high computational cost. Corresponding coarsening models are thereby desired. This work extends the coarse-grid model to polydisperse systems. Well-resolved simulations with different PSDs are processed through a filtering procedure to modify the gas–particle drag force in coarse-grid simulations. We reveal that the drag correction of individual particle exhibits a dependence on filtered solid volume fraction and filtered slip velocity for both monodisperse and polydisperse systems. Subsequently, the effect of particle size and surrounding PSD is quantified by the ratio of particle size to Sauter mean diameter. Drag correction models for systems with monodisperse and continuous PSD are developed. A priori analysis demonstrates that the developed models exhibit reliable prediction accuracy.  相似文献   

12.
The orientation of cylindrical particles in a gas–solid circulating fluidized bed was investigated by establishing a three-dimensional Euler–Lagrange model on the basis of rigid kinetics, impact kinetics and gas–solid two-phase flow theory. The resulting simulation indicated that the model could well illustrate the orientation of cylindrical particles in a riser during fluidization. The influences of bed structure and operation parameters on orientation of cylindrical particles were then studied and compared with related experimental results. The simulation results showed that the majority of cylindrical particles move with small nutation angles in the riser, the orientation of cylindrical particles is affected more obviously by their positions than by their slenderness and local gas velocities. The simulation results well agree with experiments, thus validating the proposed model and computation.  相似文献   

13.
Meso-scale structure is of critical importance to circulating fluidized bed (CFB) applications. Computational fluid dynamics (CFD) with consideration of meso-scale structures can help understand the structure-oriented coupling between flow, heat/mass transfer and reactions. This article is to review our recent progress on the so-called multiscale CFD (MSCFD), which characterizes the sub-grid meso-scale structure with stability criteria in addition to conservation equations. It is found that the mesh-independent solution of fine-grid two-fluid model (TFM) without sub-grid structures is inexact, in the sense that it overestimates the drag coefficient and fails to capture the characteristic S-shaped axial profile of voidage in a CFB riser. By comparison, MSCFD approach in terms of EMMS/matrix seems to reach a mesh-independent solution of the sub-grid structure, and succeeds in predicting the axial profile and flow regime transitions. Further application of MSCFD finds that neglect of geometric factors is one of the major reasons that cause disputes in understanding the flow regime transitions in a CFB. The operating diagram should, accordingly, include geometric factors besides commonly believed operating parameters for the intrinsic flow regime diagram. Recent extension of MSCFD to mass transfer finds that Reynolds number is insufficient for correlating the overall Sherwood number in a CFB. This is believed the main reason why the conventional correlations of Sherwood number scatter by several orders of magnitude. Certain jump change of state of motion around Reynolds number of 50–100 can be expected to clarify the abrupt decay of Sherwood number in both classical- and circulating-fluidized beds. Finally, we expect that the real-size, 3-D, full-loop, time-dependent multiscale simulation of CFB is an emerging paradigm that will realize virtual experiment of CFBs.  相似文献   

14.
The presence of solid particles in the flow of hypersonic wind tunnels damages the appearance of the experiment models in the wind tunnel and influences the accuracy of experimental results. The design of a highly efficient gas–solid separator was therefore undertaken. Particle trajectory imaging methods were used to measure trajectories under different conditions. The flow field and particle movement characteristics for different head angles (HAs) and separation tooth angles (STAs), inlet velocities, and the exhaust gas outlet pressures in the separator, were calculated using simulations based on the discrete phase model. The particle separation efficiency, pressure loss, and flow loss resulting from different structural parameters were also studied. In line with experimental observations, the characteristic angle of particle movements in the separator and the separation efficiency of the separator were found to increase with decreasing HA and with increasing STA. Separation efficiency improves with increasing inlet velocity and with increasing negative pressure of the exhaust gas outlet; however, the corresponding pressure loss and the flow rate of the waste gas also increased.  相似文献   

15.
The slow migration of a small and solid particle in the vicinity of a gas–liquid, fluid–fluid or solid–fluid plane boundary when subject to a gravity or an external flow field is addressed. By contrast with previous works, the advocated approach holds for arbitrarily shaped particles and arbitrary external Stokes flow fields complying with the conditions on the boundary. It appeals to a few theoretically established and numerically solved boundary-integral equations on the particle’s surface. This integral formulation of the problem allows us to provide asymptotic approximations for a distant boundary and also, implementing a boundary element technique, accurate numerical results for arbitrary locations of the boundary. The results obtained for spheroids, both settling or immersed in external pure shear and straining flows, reveal that the rigid-body motion experienced by a particle deeply depends upon its shape and also upon the boundary location and properties.  相似文献   

16.
The influence of temperature on fluidization was investigated by a statistical chaotic attractor comparison test known as S-statistic. After calibration of the variables used in this method, the S-test was applied to the radioactive particle tracking (RPT) data obtained from a lab-scale fluidized bed. Experiments were performed with sand as fluidized particles and in temperatures from ambient up to 600 °C with superficial gas velocities of 0.29, 0.38 and 0.52 m/s. Considering the behavior of bubbles and comparing with frequency domain analysis, it was concluded that S-statistic is a reliable method for characterization of fluidization process behavior at different temperatures.  相似文献   

17.
Vibration measurement, as a non-intrusive technique, was used to characterize the hydrodynamics of fluidized beds. A series of experiments were performed in a lab-scale fluidized bed using two accelerometers for measuring the vibration of the bed and a pressure probe for measuring pressure fluctuations. The output signals were analyzed by statistical methods. The results show that the vibration technique can predict transition velocities at high velocities and indicate that analyzing the vibration signals can be an effective non-intrusive technique to characterize the hydrodynamics of fluidized beds. It was shown that transition from bubbling to turbulent velocity can be determined from the variation of standard deviation and kurtosis of vibration signals against superficial gas velocity of the bed. However, this point could be determined only from standard deviation of pressure fluctuations, and not from skewness or kurtosis of pressure fluctuations.  相似文献   

18.
In this paper theoretical approaches and experimental findings relative to the hydrodynamics of liquid suspensions of solid particles by liquids are reported and discussed. For the single particle specie systems, advantages and possible faults of well known empirical correlations are discussed. For binary-solid mixture suspensions, experimental evidence are reviewed and approaches capable of successfully describing observed behaviour are reported.  相似文献   

19.
Magnetic resonance imaging (MRI) has been used to study the behaviour of jets at the distributor of a 50 mm diameter fluidised bed of 0.5 mm diameter poppy seeds. Two perforated-plate distributors were examined, containing either 10 or 14 holes, each 1 mm diameter. Ultra-fast MR imaging was able to show the transient nature of the upper parts of the jets, where discrete bubbles are formed. Imaging in 3D showed that the central jets were the longest for flow rates below minimum fluidisation. Above minimum fluidisation, the outer jets, nearest the wall of the fluidised bed, arched inward towards the central axis. In this latter case, interpretation of the time-averaged 3D image required the use of ultra-fast MR imaging to identify the approximate height above the distributor at which discrete bubbles were formed. The apparently continuous void extending along the central axis above this height in the time-averaged 3D image was thus identified, using ultra-fast MR imaging, as representing the averaged paths of released bubbles. Time-averaged MR velocity mapping was also used to identify dead zones of stationary particles resting on the distributor between the jets. The dead zones could be observed when the superficial velocity of the gas approached minimum fluidisation, but they were smaller than those observed at lower gas superficial velocity. Comparable images of a single jet through 1.2 mm diameter poppy seeds from MRI and electrical capacitance volume tomography (ECVT) are also demonstrated.  相似文献   

20.
We explored such issues as the formation mechanism, structure and propriety of the solid solutions of anthracene (ANT)–phenanthrene (PHE). Solution crystallization and solid-state grinding were employed to prepare solid solutions under different conditions. The thermal behavior and PXRD scanning results revealed the formation of discontinuous solid solutions, whose melting points and crystal lattices varied linearly with mixed ratio. Combing with Materials Studio, the formation possibility of solid solutions were investigated by evaluating the change of the energy. The crystal morphology of the solid solutions have a positive correlation with the change of the major part. Finally, the solution crystallization process of solid solution were studied using the population balance model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号