首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
The coupled problem of the forced axisymmetric vibrations and self-heating of electrothermoviscoelastic cylindrical shells with piezoceramic actuators under monoharmonic electromechanical loading is solved. The temperature dependence of the complex characteristics of the passive and piezoactive materials is taken into account. The coupled nonlinear problem of electrothermoelasticity is solved by using a time-marching method with discrete orthogonalization at each time step (to integrate the equations of elasticity) and an explicit finite-difference method (to solve the heat-conduction equations). An analysis is made of the effect of the boundary conditions at the shell ends, the dimensions of the piezoactuator, and the self-heating temperature on the actuator voltage and the effectiveness of active damping of the forced vibrations of the shell under uniform transverse monoharmonic pressure  相似文献   

2.
The forced monoharmonic vibrations and self-heating of a circular thermoviscoelastic plate with piezoelectric sensor and actuator are studied. The viscoelastic behavior of the passive (without piezoeffect) and piezoactive materials is described using the concept of complex moduli. The problems of electroelasticity and heat conduction are solved numerically, assuming that the mechanical load is unknown. The effect of self-heating on the active damping of the vibrations of the plate is analyzed  相似文献   

3.
The forced monoharmonic bending vibrations and dissipative heating of a piezoelectric circular sandwich plate under monoharmonic mechanical and electrical loading are studied. The core layer is passive and viscoelastic. The face layers (actuators) are piezoelectric and oppositely polarized over the thickness. The plate is subjected to harmonic pressure and electrical potential. The viscoelastic behavior of the materials is described by complex moduli dependent on the temperature of heating. The coupled nonlinear problem is solved numerically. A numerical analysis demonstrates that the natural frequency, amplitude of vibrations, mechanical stresses, and temperature of dissipative heating can be controlled by changing the area and thickness of the actuator. It is shown that the temperature dependence of the complex moduli do not affect the electric potential applied to the actuator to compensate for the mechanical stress __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 1, pp. 79–89, January 2008.  相似文献   

4.
The paper deals with the coupled problem of flexural vibrations and dissipative heating of a viscoelastic ring plate with piezoceramic actuators under monoharmonic electromechanical loading. The temperature dependence of the complex characteristics of passive and piezoactive materials is taken into account. The coupled nonlinear problem of thermoviscoelasticity is solved by an iterative method. At each iteration, orthogonal discretization is used to integrate the equations of elasticity and an explicit finite-difference scheme is used to solve the heat-conduction equation with a nonlinear heat source. The effect of the dissipative heating temperature, boundary conditions, and the thickness and area of the actuator on the active damping of the forced vibrations of the plate under uniform transverse harmonic pressure is examined __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 2, pp. 99–108, February 2008.  相似文献   

5.
An approach to the active damping of the forced resonant vibrations of orthotropic thermoviscoelastic plates with distributed sensors and actuators is proposed. The mechanical load is assumed unknown and is determined from the sensors’ indications. The problem of active damping of an isotropic thermoviscoelastic rectangular plate with hinged edges is solved as an example. A formula for the voltage to be applied to the actuator to damp the forced vibrations in the first mode is derived. The effect of the dimensions of the sensor and actuator and the dissipative properties of the materials on the effectiveness of active damping is studied  相似文献   

6.
A coupled dynamic problem of electromechanics for thin wall multilayer elements is formulated based on the Kirchhoff–Love hypotheses. In the case of harmonic loading, a simplified formulation is given using the monoharmonic approach and the concept of complex moduli to characterize the cyclic properties of the material. The problem of forced vibrations of three-layer beam, whose outer layers are made of a viscoelastic piezoactive material, and, the inner layer of a passive physically nonlinear material, is considered as an example to demonstrate the possibility of the technique elaborated. The possibility of damping the forced vibrations of a structure with the help of harmonic voltages applied to the external piezoactive layers is studied. Results obtained for the transient response of the beam using the complete model are compared with data found using the simplified model. Limitations on the simplified model application are specified.  相似文献   

7.
The paper addresses the forced flexural vibrations and dissipative heating of a circular viscoelastic plate with piezoactive actuators under axisymmetric loading. A refined formulation of this coupled problem is considered. The viscoelastic behavior of materials is described using the concept of complex moduli dependent on the temperature of dissipative heating. The electromechanical behavior of the plate is modeled based on the Timoshenko hypotheses for the mechanical variables and analogous hypotheses for the electric-field variables in the piezoactive layers of the actuator. The temperature is assumed constant throughout the thickness. The nonlinear problem is solved by a time stepping method using, at each step, the discrete-orthogonalization and finite-difference methods to solve the elastic and heat-conduction equations, respectively. A numerical study is made of the effect of the shear strain, the temperature dependence of the material properties, fixation conditions, and geometrical parameters of the plate on the vibrational characteristics and the electric potential applied to the actuator electrodes to balance the mechanical load Translated from Prikladnaya Mekhanika, Vol. 44, No. 9, pp. 104–114, September 2008.  相似文献   

8.
The bending vibration and dissipative heating of a viscoelastic isotropic ring plate with piezoceramic actuators under electromechanical loading and shear deformation are studied by solving a coupled problem. The temperature dependence of the complex characteristics of the passive and piezoactive materials is taken into account. The nonlinear problem of thermoviscoelasticity is solved by time stepping with discrete orthogonalization used at each iteration to integrate the equations of elasticity and using an explicit finite-difference scheme to solve the heat-conduction equation with a nonlinear heat source. The effect of shear deformation, fixation conditions for the plate, the geometry of the piezoactuators, and the dissipative-heating temperature on the active damping of the forced vibration of a circular plate subject to uniform transverse monoharmonic compression is studied Translated from Prikladnaya Mekhanika, Vol. 45, No. 2, pp. 124–132, February 2009.  相似文献   

9.
A strongly non-linear dynamic problem of thermomechanics for multilayer beams is formulated based on the Kirchhoff–Love hypotheses. In the case of harmonic loading, a simplified formulation is given using a single-frequency approximation and the concept of complex moduli to characterise the non-linear cyclic properties of the material. As an example, the problem of forced vibrations and dissipative heating of a roller-supported layered beam containing piezoactive layers is solved. Different aspects of thermal, mechanical and electric responses to the mechanical and electric excitations are addressed. Dissipative heating due to electromechanical losses in the three-layer beam with piezoelectric layers is studied. It is assumed that the structure fails if the temperature exceeds the Curie point for piezoceramics. Using this criterion, the fatigue life of the structure is estimated. Limitations of the approximate monoharmonic approach are also specified.  相似文献   

10.
A new approach is followed to study the effect of mixed mechanical boundary conditions on the effectiveness of active damping of the forced resonant vibrations of thermoviscoelastic orthotropic plates. The problem is solved by the Bubnov–Galerkin method. Formulas for the voltage that should be applied to the actuator to damp the first vibration mode are derived. It is shown that the mechanical boundary conditions, the dissipative properties of the material, and the dimenstions of the sensors and actuators have a strong effect on the effectiveness of active damping of the vibrations of plates  相似文献   

11.
An approximate formulation is given to a dynamic coupled thermomechanical problem for physically nonlinear inelastic thin-walled structural elements within the framework of a geometrically linear theory and the Kirchhoff–Love hypotheses. A simplified model is used to describe the vibrations and dissipative heating of inhomogeneous physically nonlinear bodies under harmonic loading. Nonstationary vibroheating problem is solved. The dissipative function obtained from the solution for steady-state vibrations is used to simulate internal heat sources. For the partial case of forced vibrations of a beam, the amplitude–frequency characteristics of the field quantities are studied within a wide frequency range. The temperature characteristics for the first and second resonance modes are compared.  相似文献   

12.
International Applied Mechanics - A refined statement of the coupled problem of axisymmetric resonant vibrations and self-heating of a shear compliant viscoelastic cylindrical shell with...  相似文献   

13.
The monoharmonic radial vibrations and dissipative heating of an infinite hollow piezoceramic cylinder are studied in dynamic formulation, taking into account the temperature dependence of the complex electromechanical characteristics over a wide range of temperatures, including depolarization temperatures. The influence of the heat exchange conditions, the level of electric load, and geometry on the thermoelectromechanical characteristics is studied in the case of forced vibrations at the first resonance__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 3, pp. 101–107, March 2005.  相似文献   

14.
Based on the author’s previously published results for transversal free vibrations of axially moving sandwich belts described by coupled partial differential equations, which are derived and analytically solved, this paper contains new analytical results, for forced vibrations of the same system excited by transversal external excitation. The transversal forced vibrations of the axially moving sandwich belts are described by the coupled partial nonhomogeneous differential equations. The partial differential equations are analytically solved. Bernoulli’s method of particular integrals and Lagrange’s method of the variations of the constants are used.  相似文献   

15.
Tylikowski  A. 《Meccanica》2003,38(6):659-668
The purpose of the present paper is to solve an active control problem of nonlinear continuous system parametric vibrations excited by the fluctuating force. The problem is solved using the concept of distributed piezoelectric sensors and actuators with a sufficiently large value of velocity feedback. The direct Liapunov method is proposed to establish criteria for the almost sure stochastic stability of the unperturbed (trivial) solution of the shell with closed-loop control. The distributed control is realized by the piezoelectric sensor and actuator, with the changing widths, glued to the upper and lower shell surface. The relation between the stabilization of nonlinear problem and a linearized one is examined. The fluctuating axial force is modeled by the physically realizable ergodic process. The rate velocity feedback is applied to stabilize the shell parametric vibrations.  相似文献   

16.
The model problem on the forced longitudinal vibrations of a physically nonlinear viscoelastic rod is solved. An assessment is made of how well the single-frequency mode is maintained during the resonance vibrations of the rod.  相似文献   

17.
The dynamic thermomechanical problem for thin-walled laminated elements is formulated based on the geometrically linear theory and Kirchhoff–Love hypotheses. A simplified model of vibrations and dissipative heating of structurally inhomogeneous inelastic bodies under harmonic loading is used. The mechanical properties of materials are described using strain-dependent complex moduli. A nonstationary vibration-heating problem is solved. The dissipative function, derived from the stationary solution, is used to specify internal heat sources. The amplitude–frequency characteristics and spatial distributions of the main field variables are studied for a sandwich beam subjected to forced vibrations  相似文献   

18.
The basic equations of the theory of thermoviscoelastic thin-walled plates with piezoelectric sensors and actuators under monoharmonic mechanical and electric loading are derived using the Kirchhoff–Love hypotheses. The thermomechanical behavior of passive and piezoactive materials is described using the concept of complex characteristics. Methods of solving nonlinear problems of active damping of thermomechanical vibrations of plates with sensors and actuators are considered. The effect of dissipative heating on the damping of axisymmetric vibrations of a thermoviscoelastic solid circular plate is analyzed as an example  相似文献   

19.
The coupled thermomechanical dynamic behavior of an inhomogeneous body is investigated for a partial case where a laminated inelastic disc is subject to forced axisymmetric vibrations and dissipative heating. The problem is solved in complete and approximate formulations. In the former case, the behavior of the material is described using generalized flow theory. In the latter case, the behavior of the material is characterized by complex moduli. The spatial distributions of the field quantities and the temperature– and amplitude–frequency characteristics of the disc are analyzed. The results are compared.  相似文献   

20.
The free and forced harmonic vibrations of viscoelastoplastic sandwich shells are analyzed. An equation for approximate determination of the amplitudes of near-resonance vibrations is derived. As an example, the problem is solved for a sandwich circular cylindrical shell  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号